Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100505    DOI: 10.1088/1674-1056/26/10/100505
GENERAL Prev   Next  

Dynamical energy equipartition of the Toda model with additional on-site potentials

Zhenjun Zhang(张振俊)1, Chunmei Tang(唐春梅)1, Jing Kang(康静)1, Peiqing Tong(童培庆)2,3
1. College of Science, Hohai University, Nanjing 210098, China;
2. School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
3. Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China
Abstract  We study the dynamical energy equipartition properties in the integrable Toda model with additional uniform or disordered on-site energies by extensive numerical simulations. The total energy is initially equidistributed among some of the lowest frequency linear modes. For the Toda model with uniform on-site potentials, the energy spectrum keeps its profile nearly unchanged in a relatively short time scale. On a much longer time scale, the energies of tail modes increase slowly with time. Energy equipartition is far away from being attached in our studied time scale. For the Toda model with disordered on-site potentials, the energy transfers continuously to the high frequency modes and eventually towards energy equipartition. We further perform a systematic study of the equipartition time teq depending on the energy density ε and the nonlinear parameter α in the thermodynamic limit for the Toda model with disordered on-site potentials. We find teq∝ (1/ε)a(1/α)b, where b≈ 2a. The values of a and b are increased when increasing the strengths of disordered on-site potentials or decreasing the number of initially excited modes.
Keywords:  energy transport behaviors      Toda model      uniform or disordered on-site potentials  
Received:  19 April 2017      Revised:  16 June 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.60.Cd (Classical transport)  
  63.10.+a (General theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575087 and 11305045) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2017B17114).
Corresponding Authors:  Peiqing Tong     E-mail:  pqtong@njnu.edu.cn

Cite this article: 

Zhenjun Zhang(张振俊), Chunmei Tang(唐春梅), Jing Kang(康静), Peiqing Tong(童培庆) Dynamical energy equipartition of the Toda model with additional on-site potentials 2017 Chin. Phys. B 26 100505

[1] Fermi E, Pasta J and Ulam S 1965 in Collected Papers of E Fermi, ed. E Segré (Chicago:University of Chicago Press) 2 978
[2] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[3] Fucito E, Marchesoni F, Marinari E, Parisi G, Peliti L and Ruffo S 1982 J. Phys. 43 707
[4] Livi R, Pettini M, Ruffo S, Sparpaglione M and Vulpiani A 1983 Phys. Rev. A 28 3544
[5] Livi R, Pettini M, Ruffo S, Sparpaglione M and Vulpiani A 1985 Phys. Rev. A 31 1039
[6] Pettini M and Landolfi M 1990 Phys. Rev. A 41 768
[7] Pettini M and Cerruti-Sola M 1991 Phys. Rev. A 44 975
[8] Kantz H, Livi R and Ruffo S 1994 J. Stat. Phys. 76 627
[9] De Luca J, Lichtenberg A J and Ruffo S 1995 Phys. Rev. E 51 2877
[10] Casetti L, Cerruti-Sola M, Pettini M and Cohen E G D 1997 Phys. Rev. E 55 6566
[11] De Luca J, Lichtenberg A J and Ruffo S 1999 Phys. Rev. E 60 3781
[12] Ullmann K, Lichtenberg A J and Corso G 2000 Phys. Rev. E 61 2471
[13] Ponno A, Galgani L and Guerra F 2000 Phys. Rev. E 61 7081
[14] Villain P and Lewenstein M 2000 Phys. Rev. A 62 043601
[15] De Luca J and Lichtenberg A 2002 Phys. Rev. E 66 026206
[16] Berchialla L, Giorgilli A and Paleari S 2004 Phys. Lett. A 321 167
[17] Campbell D K, Rosenau P and Zaslavsky G M 2005 Chaos 15 015101
[18] Berman G P and Izrailev F M 2005 Chaos 15 015104
[19] Lichtenberg A J, Mirnov V V and Day C 2005 Chaos 15 015109
[20] Carati A, Galgani L, Giorgilli A and Paleari S 2007 Phys. Rev. E 76 022104
[21] Benettin G, Livi R and Ponno A 2009 J. Stat. Phys. 135 873
[22] Benettin G and Ponno A 2011 J. Stat. Phys. 144 793
[23] Ponno A, Christodoulidi H, Skokos C and Flach S 2011 Chaos 21 043127
[24] Genta T, Giorgilli A, Paleari S and Penati T 2012 Phys. Lett. A 376 2038
[25] Benettin G, Christodoulidi H and Ponno A 2013 J. Stat. Phys. 152 195
[26] Maiocchi A, Bambusi D and Carati A 2014 J. Stat. Phys. 155 300
[27] Zhang Z J, Tang C M and Tong P Q 2016 Phys. Rev. E 93 022216
[28] Toda M 1979 Phys. Scr. 20 424
[29] Toda M 1975 Phys. Rep. 18 1
[30] Anderson P W 1958 Phys. Rev. 109 1492
[31] Skokos Ch and Gerlach E 2010 Phys. Rev. E 82 036704
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!