Special Issue:
TOPICAL REVIEW — Precision measurement and cold matters
|
TOPICAL REVIEW—Precision measurement and cold matters |
Prev
Next
|
|
|
Precision spectroscopy with a single 40Ca+ ion in a Paul trap |
Guan Hua (管桦)a b, Huang Yao (黄垚)a b, Liu Pei-Liang (刘培亮)a b, Bian Wu (边武)a b c, Shao Hu (邵虎)a b c, Gao Ke-Lin (高克林)a b |
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; b Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; c University of Chinese Academy of Sciences, Beijing 100080, China |
|
|
Abstract Precision measurement of the 4s 2S1/2–3d 2D5/2 clock transition based on 40Ca+ ion at 729 nm is reported. A single 40Ca+ ion is trapped and laser-cooled in a ring Paul trap, and the storage time for the ion is more than one month. The linewidth of a 729 nm laser is reduced to about 1 Hz by locking to a super cavity for longer than one month uninterruptedly. The overall systematic uncertainty of the clock transition is evaluated to be better than 6.5× 10-16. The absolute frequency of the clock transition is measured at the 10-15 level by using an optical frequency comb referenced to a hydrogen maser which is calibrated to the SI second through the global positioning system (GPS). The frequency value is 411 042 129 776 393.0(1.6) Hz with the correction of the systematic shifts. In order to carry out the comparison of two 40Ca+ optical frequency standards, another similar 40Ca+ optical frequency standard is constructed. Two optical frequency standards exhibit stabilities of 1× 10-14τ-1/2 with 3 days of averaging. Moreover, two additional precision measurements based on the single trapped 40Ca+ ion are carried out. One is the 3d 2D5/2 state lifetime measurement, and our result of 1174(10) ms agrees well with the results reported in [Phys. Rev. A 62 032503 (2000)] and [Phys. Rev. A 71 032504 (2005)]. The other one is magic wavelengths for the 4s 2S1/2–3d 2D5/2 clock transition; λ|mj|= 1/2= 395.7992(7) nm and λ|mj|= 3/2= 395.7990(7) nm are reported, and it is the first time that two magic wavelengths for the 40Ca+ clock-transition have been reported.
|
Received: 09 February 2015
Revised: 23 March 2015
Accepted manuscript online:
|
PACS:
|
42.62.Fi
|
(Laser spectroscopy)
|
|
37.10.Ty
|
(Ion trapping)
|
|
43.58.Hp
|
(Tuning forks, frequency standards; frequency measuring and recording instruments; time standards and chronographs)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821301 and 2005CB724502), the National Natural Science Foundation of China (Grant Nos. 11474318, 91336211, and 11034009), and Chinese Academy of Sciences. |
Corresponding Authors:
Gao Ke-Lin
E-mail: klgao@wipm.ac.cn
|
About author: 42.62.Fi; 37.10.Ty; 43.58.Hp |
Cite this article:
Guan Hua (管桦), Huang Yao (黄垚), Liu Pei-Liang (刘培亮), Bian Wu (边武), Shao Hu (邵虎), Gao Ke-Lin (高克林) Precision spectroscopy with a single 40Ca+ ion in a Paul trap 2015 Chin. Phys. B 24 054213
|
[1] |
Levi F, Calonico D, Calosso C E, Godone A, Micalizio S and Costanzo G A 2014 Metrologia 51 270
|
[2] |
Reichert J, Niering M, Holzwarth R, Weitz M, Udem T and Hänsch T W 2000 Phys. Rev. Lett. 84 3232
|
[3] |
Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem Th and Hänsch T W 2000 Phys. Rev. Lett. 84 5102
|
[4] |
Hagemann C, Grebing C, Lisdat C, Falke S, Legero T, Sterr U, Riehle F, Martin M J and Ye J 2014 Opt. Lett. 39 5102
|
[5] |
Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L and Ye J 2012 Nat. Photonics 6 687
|
[6] |
Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
|
[7] |
Targat R Le, Lorini L, Coq Y L, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P and Lodewyck J 2013 Nat. Commun. 4 2109
|
[8] |
Takamoto M, Takano T and Katori H 2011 Nat. Photonics 5 288
|
[9] |
Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U and Lisdat C 2014 New J. Phys. 16 073023
|
[10] |
Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U and Lisdat C 2013 Science 341 1215
|
[11] |
Barwood G P, Huang G, Klein H A, Johnson L A M, King S A, Margolis H S, Szymaniec K and Gill P 2014 Phys. Rev. A 89 050501
|
[12] |
Dubé P, Madej A A, Tibbo M and Bernard J E 2014 Phys. Rev. Lett. 112 173002
|
[13] |
Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801
|
[14] |
Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C and Peik E 2012 Phys. Rev. Lett. 108 090801
|
[15] |
Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
|
[16] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
|
[17] |
Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hänsel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D and Laurent P 2009 Phys. Rev. Lett. 102 023002
|
[18] |
Huang Y, Cao J, Liu P L, Ou B Q, Guan H, Huang X R, Li T C and Gao K L 2012 Phys. Rev. A 85 030503
|
[19] |
Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T and Hosokawa M 2012 Opt. Express 20 22034
|
[20] |
Consultative Committee for Time and Frequency (CCTF) Report of the 19th Meeting (September 13-14, 2012)
|
[21] |
Chen N and Xu X Y 2015 Laser Phys. Lett. 12 015501
|
[22] |
Zhang X H, Zhou M, Chen N, Gao Q, Han C Y, Yao Y, Xu P, Li S Y, Xu Y L, Jiang Y Y, Bi Z Y, Ma L S and Xu X Y 2015 Laser Phys. Lett. 12 025501
|
[23] |
Yu D S and Chen J B 2007 Phys. Rev. Lett. 98 050801
|
[24] |
Chen J B 2009 Chin. Sci. Bull. 54 348
|
[25] |
Recommendation 2(c2-2009)-(CIPM)
|
[26] |
Champenois C, Houssin M, Lisowski C, Knoop M, Hagel G, Vedel M and Vedel F 2004 Phy. Lett. A 331 298
|
[27] |
Kirchmair G, Benhelm J, Zähringer F, Gerritsma R, Roos C F and Blatt R 2009 Phys. Rev. A 79 020304
|
[28] |
Jurcevic P, Lanyon B P, Hauke P, Hempel C, Zoller P, Blatt R and Roos C F 2014 Nature 511 202
|
[29] |
Ramm M, Pruttivarasin Th, Kokish M, Talukdar I and Häffner H 2013 Phys. Rev. Lett. 111 023004
|
[30] |
Sherman J A, Curtis M J, Szwer D J, Allcock D T C, Imreh G, Lucas D M and Steane A M 2013 Phys. Rev. Lett. 111 180501
|
[31] |
Barton P A, Donald C J S, Lucas D M, Stevens D A, Steane A M and Stacey D N 2000 Phys. Rev. A 62 032503
|
[32] |
Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Hänsel W, Schmidt-Kaler F, Blatt R and Safronova M S 2005 Phys. Rev. A 71 032504
|
[33] |
Shu H L, Guan H, Huang X R, Li J M and Gao K L 2005 Chin. Phys. Lett. 22 1641
|
[34] |
Guo B, Guan H, Liu Q, Huang Y, Qu W, Huang X R and Gao K L 2009 Front. Phys. China 4 144
|
[35] |
Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R and Gao K L 2011 Chin. Phys. Lett. 28 013201
|
[36] |
Guan H, Liu Q, Huang Y, Guo B, Qu W, Cao J, Huang G, Huang X R and Gao K L 2011 Opt. Commun. 284 217
|
[37] |
Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X and Gao K 2011 Phys. Rev. A 84 053841
|
[38] |
Gulde S, Rotter D, Barton P, Schmidt-Kaler F, Blatt R and Hogervorst W 2001 Appl. Phys. B 73 861
|
[39] |
Guan H, Guo B, Huang G L, Shu H L, Huang X R and Gao K L 2007 Opt. Commun. 274 182
|
[40] |
Qu W C, Huang Y, Guan H, Huang X R and Gao K L 2011 Chin. Journal of Lasers 38 0803008
|
[41] |
Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
|
[42] |
Reichert J, Niering M, Holzwarth R, Weitz M, Udem T and Hansch T W 1999 Phys. Rev. Lett. 84 3232
|
[43] |
Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem Th and Hansch T W 2000 Phys. Rev. Lett. 84 5102
|
[44] |
Udem Th, Holzwarth R and Hänsch T W 2002 Nature 416 233
|
[45] |
Cundiff S T and Ye J 2003 Rev. Mod. Phys. 75 325
|
[46] |
Dehmelt H 1982 IEEE Trans. Instrum. Meas. IM-31 83
|
[47] |
Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
|
[48] |
Bernard J E, Marmet L and Madej A A 1998 Opt. Commun. 150 170
|
[49] |
Madej A A, Bernard J E, Dubé P, Marmet L and Windeler R S 2004 Phys. Rev. A 70 012507
|
[50] |
Itano W M 2000 J. Res. NIST 105 829
|
[51] |
Bureau International des Poids et Mesures (BIPM), Circular T May&June 2010, http://www1.bipm.org/en/scientific/tai/time_ftp.html
|
[52] |
Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H and Gao K L 2014 Chin. Phys. Lett. 31 113702
|
[53] |
Guan H, Shao H, Qian Y, Huang Y, Liu P L, Bian W, Li C B, Sahoo B. K and Gao K L 2015 Phys. Rev. A 91 022511
|
[54] |
Takamoto M, Hong F, Higashi R and Katoril H 2005 Nature 435 321
|
[55] |
Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V and Yudin V I 2008 Phys. Rev. Lett. 100 103002
|
[56] |
Yi L, Mejri S, McFerran J J, Coq Y L and Bize S 2011 Phys. Rev. Lett. 106 073005
|
[57] |
Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B 43 202001
|
[58] |
Tang Y, Qiao H, Shi T and Mitroy J 2013 Phys. Rev. A 87 042517
|
[59] |
Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J and Gao K L 2014 arXiv:1409.2576 [physics.atom-ph]
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|