Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090202    DOI: 10.1088/1674-1056/25/9/090202
GENERAL Prev   Next  

Statistical second-order two-scale analysis and computation for heat conduction problem with radiation boundary condition in porous materials

Zhi-Qiang Yang(杨志强), Shi-Wei Liu(刘世伟), Yi Sun(孙毅)
Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China
Abstract  This paper discusses a statistical second-order two-scale (SSOTS) analysis and computation for a heat conduction problem with a radiation boundary condition in random porous materials. Firstly, the microscopic configuration for the structure with random distribution is briefly characterized. Secondly, the SSOTS formulae for computing the heat transfer problem are derived successively by means of the construction way for each cell. Then, the statistical prediction algorithm based on the proposed two-scale model is described in detail. Finally, some numerical experiments are proposed, which show that the SSOTS method developed in this paper is effective for predicting the heat transfer performance of porous materials and demonstrating its significant applications in actual engineering computation.
Keywords:  statistical second-order two-scale method      radiation boundary condition      random porous materials  
Received:  21 February 2016      Revised:  15 May 2016      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  44.40.+a (Thermal radiation)  
  02.60.-x (Numerical approximation and analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant Nos. 2015M580256 and 2016T90276).
Corresponding Authors:  Zhi-Qiang Yang     E-mail:  yangzhiqiang@hit.edu.cn

Cite this article: 

Zhi-Qiang Yang(杨志强), Shi-Wei Liu(刘世伟), Yi Sun(孙毅) Statistical second-order two-scale analysis and computation for heat conduction problem with radiation boundary condition in porous materials 2016 Chin. Phys. B 25 090202

[1] Liu S T and Zhang Y C 2006 Multidiscipline Modeling Mat. Str. 2 327
[2] Daryabeigi K 1999 37th AIAA Aerospace Sciences Meeting and Exhibit, January 11-14, 1999, Reno, NV
[3] Bakhvalov N S 1981 Differ. Uraun. 17 1774
[4] Yang Z Q, Cui J Z, Nie Y F and Ma Q 2012 CMES: Comp. Model. Eng. 88 419
[5] Yang Z Q, Cui J Z and Li Y Q 2013 Int. J. Numer. Anal. Mod. Series B 4 151
[6] Allaire G and Ganaoui K El 2009 Multiscale Model. Sim. 7 1148
[7] Ma Q and Cui J Z 2012 Commun. Comput. Phys. 14 1027
[8] Amosov A A 2010 J. Math. Sci. 164 309
[9] Amosov A A 2010 J. Math. Sci. 169 1
[10] Tiihonen T 1997 Math. Method. Appl. Sci. 20 47
[11] Qatanani N, Barham A and Heeh Q 2007 Surv. Math. Appl. 2 43
[12] Yang Z Q, Cui J Z and Li B W 2014 Chin. Phys. B 23 030203
[13] Oleinik O A, Shamaev A S and Yosifian G A 1992 Mathematical Problems in Elasticity and Homogenization (Amsterdam: North-Holland)
[14] Yang Z H, Chen Y, Yang Z Q and Ma Q 2014 Chin. Phys. B 23 076501
[15] Weinan E and Engquist B 2003 Commun. Math. Sci. 1 87
[16] Jikov V V, Kozlov S M and Oleinik O A 1994 Homogenization of Differential Operators and Integral Functions (Berlin: Springer)
[17] Dong H, Cui J Z, Nie Y F and Wu Y T 2015 Chin. Phys. B 24 090204
[18] Li Y Y and Cui J Z 2005 Compos. Sci. Technol. 65 1447
[19] Yu Y, Cui J Z and Han F 2008 Compos. Sci. Technol. 68 2543
[20] Li Y Y and Long S Y 2009 Appl. Math. Model. 33 3157
[21] He W M, Guan X F and Zhang X J 2011 Int. J. Mod. Phys. B 25 143
[22] Mori T and Tanaka K 1973 Acta Metall. 21 571
[23] Hill R 1965 J. Mech. Phys. Solids 13 213
[24] Chou T W, Nomura S and Taya M 1980 J. Compos. Mater. 14 178
[25] Hashin Z and Shtrikman S 1962 J. Appl. Phys. 33 3125
[26] Yang Z Q, Cui J Z, Sun Y and Ge J R 2015 Finite Elem. Anal. Des. 102-103 7
[27] Li Y Y 2009 Math. Numer. Sin. 31 275 (in Chinese)
[28] Yan C H 2006 Thermal Insulating Mechanism and Research on Thermal Insulating Efficiency of Thermal Insulations of Metallic Thermal Protection System (Ph.D. Dissertation) (Harbin: Harbin Institute of Technology) (in Chinese)
[1] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[5] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[8] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[9] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[10] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[11] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[12] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[15] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
No Suggested Reading articles found!