INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Fabrication of Al/AlOx/Al junctions using pre-exposure technique at 30-keV e-beam voltage |
Dong Lan(兰栋)1, Guangming Xue(薛光明)1, Qiang Liu(刘强)1, Xinsheng Tan(谭新生)1, Haifeng Yu(于海峰)1,2, Yang Yu(于扬)1,2 |
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We fabricate high-quality Al/AlOx/Al junctions using improved bridge and bridge-free techniques at 30-keV e-beam voltage, in which the length of undercut and the size of junction can be well controlled by the pre-exposure technique. The dose window is 5 times as large as that used in the usual Dolan bridge technique, making this technique much more robust. Similar results, comparable with those achieved using a 100-keV e-beam writer, are obtained, which indicate that the 30-keV e-beam writer could be an economic choice for the superconducting qubit fabrication.
|
Received: 23 February 2016
Revised: 07 April 2016
Accepted manuscript online:
|
PACS:
|
85.25.Cp
|
(Josephson devices)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Basic Research Program of China (Grant Nos. 2011CB922104 and 2011CBA00205). |
Corresponding Authors:
Guangming Xue, Haifeng Yu
E-mail: xuegm123@163.com;hfyu@nju.edu.cn
|
Cite this article:
Dong Lan(兰栋), Guangming Xue(薛光明), Qiang Liu(刘强), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬) Fabrication of Al/AlOx/Al junctions using pre-exposure technique at 30-keV e-beam voltage 2016 Chin. Phys. B 25 088501
|
[1] |
Clarke J and Braginski A I 2004 The SQUID Handbook (Weinhein:Wiley-VCH)
|
[2] |
Mukhanov O A and Semenov V K 1985 Preprint No. 9/1985, Department of Physics, Moscow State University, Moscow, Russia
|
[3] |
Grabert H and Devoret M 1992 Single Charge Tunneling:Coulomb Blockade Phenomena in Nanostructures (New York:Plenum Press)
|
[4] |
Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y and Tsai J S 2008 Appl. Phys. Lett. 93 042510
|
[5] |
Clarke J and Wilhelm F K 2008 Nature 453 1031
|
[6] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[7] |
Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
|
[8] |
Chow J M, Córcoles A D, Gambetta J M, Rigetti C, Johnson B R, Smolin J A, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2011 Phys. Rev. Lett. 107 080502
|
[9] |
Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L and Schoelkopf R J 2011 Phys. Rev. Lett. 105 173601
|
[10] |
Jin X Y, Kamal A, Sears A P, Gudmundsen T, Hover D, Miloshi J, Slattery R, Yan F, Yoder J, Orlando T P, Gustavsson S and Oliver W D 2015 Phys. Rev. Lett. 114 240501
|
[11] |
Weber S J, Chantasri A, Dressel J, Jordan A N, Murch K W and Siddiqi I 2014 Nature 511 570
|
[12] |
de Lange G, Rist'e D, Tiggelman M J, Eichler C, Tornberg L, Johansson G, Wallraff A, Schouten R N and DiCarlo L 2014 Phys. Rev. Lett. 112 080501
|
[13] |
Eichler C, Lang C, Fink J M, Govenius J, Filipp S and Wallraff A 2008 Phys. Rev. Lett. 109 240501
|
[14] |
Liu Y H, Lan D, Tan X S, Zhao J, Zhao P, Li M M, Zhang K, Dai K Z, Li Z Y, Liu Q, Huang S D, Xue G M, Xu P, Yu H F, Zhu S L and Yu Y 2015 Appl. Phys. Lett. 107 202601
|
[15] |
Dolan G J 1977 Appl. Phys. Lett. 31 337
|
[16] |
Kelly J S 2015 "Fault-tolerant superconducting qubits", Ph. D. Dissertation (University of California, Santa Barbara, USA)
|
[17] |
Lecocq F, Pop I M, Peng Z H, Matei I, Crozes T, Fournier T, Naud C, Guichard W and Buisson O 2011 Nanotechnology 22 315302
|
[18] |
Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P and Martinis J M 2004 Phys. Rev. Lett. 93 077003
|
[19] |
Tinkham M 2004 Introduction to Superconductivity (New York:Dover Publications)
|
[20] |
Pop I M, Geerlings K, Catelani G, Schoelkopf R J, Glazman L I and Devoret M H 2014 Nature 508 369
|
[21] |
Quintana C M, Megrant A, Chen Z, et al. 2014 Appl. Phys. Lett. 105 062601
|
[22] |
Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H and Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|