Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 088502    DOI: 10.1088/1674-1056/25/8/088502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling of trap-assisted tunneling on performance of charge trapping memory with consideration of trap position and energy level

Zhi-Yuan Lun(伦志远)1, Yun Li(李云)1, Kai Zhao(赵凯)2, Gang Du(杜刚)1, Xiao-Yan Liu(刘晓彦)1, Yi Wang(王漪)1
1 Institute of Microelectronics, Peking University, Beijing 100871, China;
2 School of Information and Communication, Beijing Information Science and Technology University, Beijing 100101, China
Abstract  

In this work, the trap-assisted tunneling (TAT) mechanism is modeled as a two-step physical process for charge trapping memory (CTM). The influence of the TAT mechanism on CTM performance is investigated in consideration of various trap positions and energy levels. For the simulated CTM structure, simulation results indicate that the positions of oxide traps related to the maximum TAT current contribution shift towards the substrate interface and charge storage layer interface during time evolutions in programming and retention operations, respectively. Lower programming voltage and retention operations under higher temperature are found to be more sensitive to tunneling oxide degradation.

Keywords:  trap assisted tunneling      charge trapping memory      tunneling oxide degradation  
Received:  05 March 2016      Revised:  12 April 2016      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.-z (Semiconductor devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61404005, 61421005, and 91434201).

Corresponding Authors:  Gang Du     E-mail:  gangdu@pku.edu.cn

Cite this article: 

Zhi-Yuan Lun(伦志远), Yun Li(李云), Kai Zhao(赵凯), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦), Yi Wang(王漪) Modeling of trap-assisted tunneling on performance of charge trapping memory with consideration of trap position and energy level 2016 Chin. Phys. B 25 088502

[1] White M H, Wang Y, Wrazien S J and Zhao Y 2006 Int. J. High Speed Electron. Syst. 16 479
[2] Ielmini D, Spinelli A S, Lacaita A L and Modelli A 2001 Microelectron. Eng. 59 189
[3] Meena J S, Sze S M, Chand U and Tseng T Y 2014 Nanoscale Res. Lett. 9 1
[4] Hou Y, Celano U, Goux L, Liu L, Fantini A, Degraeve R, Youssef A, Xu Z, Cheng Y, Kang J, Jurczak M and Vandervorst W 2016 Appl. Phys. Lett. 108 123106
[5] Chen J, Du G and Liu X Y 2015 Chin. Phys. B 24 057702
[6] Fan X, Chen H P, Wang Q, Wang Y Q, Lv S L, Liu Y, Song Z T, Feng G M and Liu B 2015 Chin. Phys. Lett. 32 068301
[7] Park Y, Choi J, Kang C, Lee C, Shin Y, Choi B, Kim J, Jeon S, Sel J, Park J, Choi K, Yoo T, Sim J and Kim K 2006 Proceedings of International Electron Devices Meeting, pp. 1-4
[8] Gilmer D C, Goel N, Park H, Park C, Verma S, Bersuker G, Lysaght P, Tseng H H, Kirsch P D, Saraswat K C and Jammy R 2009 Proceedings of International Electron Devices Meeting, pp. 1-4
[9] Liu L F, Pan L Y, Zhang Z G and Xu J 2015 Chin. Phys. Lett. 32 088501
[10] Tanaka H, Kido M, Yahashi K, Oomura M, Katsumata R, Kito M, Fukuzumi Y, Sato M, Nagata Y, Matsuoka Y, Iwata Y, Aochi H and Nitayama A 2007 Proceedings of Symposium on VLSI Technology, pp. 14-15
[11] Jang J, Kim H S, Cho W, Cho H, Kim J, Shim S I, Jang Y, Jeong J H, Son B K, Kim D W, Kihyun, Shim J J, Lim J S, Kim K H, Yi S Y, Lim J Y, Chung D, Moon H C, Hwang S, Lee J W, Son Y H, Chung U and Lee W S 2009 Proceedings of Symposium on VLSI Technology, pp. 192-193
[12] Park K T, Byeon D S and Kim D H 2014 Proceedings of the 14th Non-Volatile Memory Technology Symposium, pp. 1-5
[13] Lun Z, Wang T, Zeng L, Zhao K, Liu X, Wang Y, Kang J and Du G 2013 Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, pp. 292-295
[14] Fayrushin A, Lee C H, Park Y, Choi J H and Chung C 2013 IEEE Trans. Electron Dev. 60 2031
[15] Larcher L 2003 IEEE Trans. Electron Dev. 50 1246
[16] Vianello E, Driussi F, Esseni D, Selmi L, van Duuren M J and Widdershoven F 2006 Proceeding of the 36th European Solid-State Device Research Conference, pp. 403-406
[17] Zhang M, Huo Z, Yu Z, Liu J and Liu M 2011 J. Appl. Phys. 110 114108
[18] Lee K, Kang M, Seo S, Kang D, Li D H, Hwang Y and Shin H 2014 Electron Dev. Lett. 35 51
[19] Amoroso S M, Gerrer L, Adamu-Lema F, Markov S and Asenov A 2013 Proceedings of International Reliability Physics Symposium, pp. 3B.4.1-3B.4.6
[20] Peng Y, Liu X, Du G, Liu F, Jin R and Kang J 2012 Chin. Phys. B 21 078501
[21] Lun Z, Du G, Zhao K, Liu X and Wang Y 2016 Sci. China:Inf. Sci. DOI:10.1007s11432-015-5475-7
[22] Song Y, Liu X, Du G, Kang J and Han R 2008 Chin. Phys. B 17 2678
[23] Gerrer L, Markov S, Amoroso S M, Adamu-Lema F and Asenov A 2012 Microelectron. Reliab. 52 1918
[24] Grasser T 2012 Microelectron. Reliab. 52 39
[25] Shockley W and Read W T 1952 Phys. Rev. 87 835
[26] Vandelli L, Padovani A, Larcher L, Southwick R G, Knowlton W B and Bersuker G 2011 IEEE Trans. Electron Dev. 58 2878
[27] Padovani A, Larcher L, Heh D and Bersuker G 2009 Electron Dev. Lett. 30 882
[28] Seo Y J, Kim K C, Kim H D, Joo M S, An H M and Kim T G 2008 Appl. Phys. Lett. 93 063508
[29] Padovani A, Larcher L, Verma S, Pavan P, Majhi P, Kapur P, Parat K, Bersuker G and Saraswat K 2008 Proceedins of International Reliability Physics Symposium, pp. 616-620
[30] Padovani A, Larcher L, Heh D, Bersuker G, Della M V and Pavan P 2010 Appl. Phys. Lett. 96 223505
[31] Moon P, Lim J Y, Youn T U, Park S K and Yun I 2014 Solid-State Electron. 94 51
[1] Charge trapping memory device based on the Ga2O3 films as trapping and blocking layer
Bing Bai(白冰), Hong Wang(王宏), Yan Li(李岩), Yunxia Hao(郝云霞), Bo Zhang(张博), Boping Wang(王博平), Zihang Wang(王子航), Hongqi Yang(杨红旗), Qihang Gao(高启航), Chao Lü(吕超), Qingshun Zhang(张庆顺), Xiaobing Yan(闫小兵). Chin. Phys. B, 2019, 28(10): 106802.
[2] Comparison between N2 and O2 anneals on the integrity of an Al2O3/Si3N4/SiO2/Si memory gate stack
Chu Yu-Qiong (褚玉琼), Zhang Man-Hong (张满红), Huo Zong-Liang (霍宗亮), Liu Ming (刘明). Chin. Phys. B, 2014, 23(8): 088501.
[3] The influence of thermally assisted tunneling on the performance of charge trapping memory
Peng Ya-Hua(彭雅华), Liu Xiao-Yan(刘晓彦), Du Gang(杜刚), Liu Fei(刘飞), Jin Rui(金锐), and Kang Jin-Feng(康晋锋) . Chin. Phys. B, 2012, 21(7): 078501.
[4] Carriers recombination processes in charge trapping memory cell by simulation
Song Yun-Cheng(宋云成), Liu Xiao-Yan(刘晓彦), Du Gang(杜刚), Kang Jin-Feng(康晋锋), and Han Ru-Qi(韩汝琦) . Chin. Phys. B, 2008, 17(7): 2678-2682.
No Suggested Reading articles found!