Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087301    DOI: 10.1088/1674-1056/25/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Advantages of using gold hollow nanoshells in cancer photothermal therapy

Sattar Abbasi1, Mojtaba Servatkhah1, Mohammad Mehdi Keshtkar2
1 Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran;
2 Department of Physics, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran
Abstract  Lots of studies have been conducted on the optical properties of gold nanoparticles in the first region of near infrared (650 nm-950 nm), however new findings show that the second region of near-infrared (1000 nm-1350 nm) penetrates to the deeper tissues of the human body. Therefore, using the above-mentioned region in photo-thermal therapy (PTT) of cancer will be more appropriate. In this paper, absorption efficiency is calculated for gold spherical and rod-shaped nanoshells by the finite element method (FEM). The results show that the surface plasmon frequency of these nanostructures is highly dependent on the dimension and thickness of shell and it can be adjusted to the second region of near-infrared. Thus, due to their optical tunability and their high absorption efficiency the hollow nanoshells are the most appropriate options for eradicating cancer tissues.
Keywords:  surface plasmon      absorption efficiency      near-infrared      nanotubes  
Received:  14 November 2015      Revised:  29 February 2016      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  87.50.wp (Therapeutic applications)  
  78.67.Ch (Nanotubes)  
Corresponding Authors:  Sattar Abbasi     E-mail:  abbasi86@mail.com

Cite this article: 

Sattar Abbasi, Mojtaba Servatkhah, Mohammad Mehdi Keshtkar Advantages of using gold hollow nanoshells in cancer photothermal therapy 2016 Chin. Phys. B 25 087301

[1] Brannon-Peppas L and Blanchette J O 2012 Adv. Drug Deliv. Rev. 64 206
[2] Yu J, Huang D Y, Yousaf M Z, Hou Y L and Gao S 2013 Chin. Phys. B 22 027506
[3] Jiao P F, Zhou H Y, Chen L X and Yan B 2011 Curr. Med. Chem. 18 2086
[4] Jain S, Hirst D G and O'Sullivan J M 2012 Br. J. Radiol. 85 101
[5] Wang M and Thanou M 2010 Pharmacol. Res. 62 90
[6] Yu M K, Park J and Jon S 2012 Theranostics. 2 3
[7] Kumar A, Ma H, Zhang X, Huang K, Jin S, Liu J, Wei T, Cao W, Zou G and Liang X J 2012 Biomaterials 33 1180
[8] Dreaden E C, Austin L A, Mackey M A and El-Sayed M A 2012 Ther. Deliv. 3 457
[9] Gil P R and Parak W J 2008 ACS Nano 2 2200
[10] Huang X and El-Sayed M A 2011 Alexandria J. Med. 47 1
[11] Glazer E S and Curley S A 2011 Surg. Oncol. Clin. N. Am. 20 229
[12] Yue X L, Ma F and Dai Z F 2014 Chin. Phys. B 23 044301
[13] Shibu E S, Hamada M, Murase N and Biju V 2013 J. Photochem. Photobiol. C Photochem. Rev. 15 53
[14] Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S, McDonald J F and El-Sayed M A 2008 Cancer Lett. 269 57
[15] Gobin A M, Lee M H, Halas N J, James W D, Drezek R A and West J L 2007 Nano Lett. 7 1929
[16] Melancon M P, Zhou M and Li C 2011 Acc. Chem. Res. 44 947
[17] Choi W Il, Sahu A, Kim Y H and Tae G 2012 Ann. Biomed. Eng. 40 534
[18] Rozanova N and Zhang J 2009 Sci. China, Ser. B Chem. 52 1559
[19] MacKey M A, Ali M R K, Austin L A, Near R D and El-Sayed M A 2014 J. Phys. Chem. B 118 1319
[20] Kirui D K, Krishnan S, Strickland A D and Batt C A 2011 Macromol. Biosci. 11 779
[21] Lu W, Zhang G, Zhang R, Flores L G, Huang Q, Gelovani J G and Li C 2010 Cancer Res. 70 3177
[22] Vijayaraghavan P, Liu C H, Vankayala R, Chiang C S and Hwang K C 2014 Adv. Mater. 26 6689
[23] Ayala-Orozco C, Urban C, Bishnoi S, Urban A, Charron H, Mitchell T, Shea M, Nanda S, Schiff R, Halas N and Joshi A 2014 J. Control Release 191 90
[24] Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang J Z and Li C 2009 Clin. Cancer Res. 15 876
[25] Mallick S, Sun I C, Kim K and Yi D K 2013 J. Nanosci. Nanotechnol. 13 3223
[26] Yin N Q, Liu L, Lei J M, Jiang T T, Zhu L X and Xu X L 2013 Chin. Phys. B 22 097502
[27] Shao J, Griffin R J, Galanzha E I, Kim J W, Koonce N, Webber J, Mustafa T, Biris A S, Nedosekin D A and Zharov V P 2013 Sci. Rep. 3 1293
[28] Khlebtsov N G and Dykman L A 2010 J. Quantum Spectrosc. Radiat. Transf. 111 1
[29] Henry A I, Bingham J M, Ringe E, Marks L D, Schatz G C and Van Duyne R P 2011 J. Phys. Chem. C 115 9291
[30] Major K J, De C and Obare S O 2009 Plasmonics 4 61
[31] Zhang H X, Gu Y and Gong Q H 2008 Chin. Phys. B 17 2567
[32] Rodríguez-Oliveros R and Sánchez-Gil J A 2012 Opt. Express 20 621
[33] Petryayeva E and Krull U J 2011 Anal. Chim. Acta 706 8
[34] Zhang J and Zhang L 2012 Adv. Opt. Photon. 4 157
[35] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
[36] Mitchell J 2010 Sensors 10 7323
[37] Xie H N, Larmour I A, Smith W E, Faulds K and Graham D 2012 J. Phys. Chem. C 116 8338
[38] Zeng S, Yu X, Law W C, Zhang Y, Hu R, Dinh X Q, Ho H P and Yong K T 2013 Sensors Actuators B:Chem. 176 1128
[39] Olson T Y, Schwartzberg A M, Orme C A, Talley C E, Conneull B and Zhang J Z 2008 J. Phys. Chem. C 112 6319
[40] Klar T, Perner M, Grosse S, von Plessen G, Spirkl W and Feldmann J 1998 Phys. Rev. Lett. 80 4249
[41] Xiang G, Zhang N and Zhou X 2010 Nanoscale Res. Lett. 5 818
[42] Jain P K, Lee K S, El-Sayed I H and El-Sayed M A 2006 J. Phys. Chem. B 110 7238
[43] Wang J, Wheeler D, Zhang J Z, Achilefu S and Kang K A 2013 Adv. Exp. Med. Biol. 765 323
[44] Lee J, Chatterjee D K, Lee M H and Krishnan S 2014 Cancer Lett. 347 46
[45] You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt C S, Liang D, Wei W, Sood A K and Li C 2012 J. Control Release 158 319
[46] Cheng F Y, Chen C T and Yeh C S 2009 Nanotechnology 20 425104
[47] Sikdar D, Rukhlenko I D, Cheng W and Premaratne M 2013 Nanoscale Res. Lett. 8 142
[48] Han J, Li J, Jia W, Yao L, Li X, Jiang L and Tian Y 2014 ACS Nano 4 1033
[49] Guo L, Panderi I, Yan D D, Szulak K, Li Y, Chen Y T, Ma H, Niesen D B, Seeram N, Ahmed A, Yan B, Pantazatos D and Lu W 2013 ACS Nano 7 8780
[50] Jelveh S and Chithrani D B 2011 Cancers 3 1081
[51] Park J, Park J, Ju E J, Park S S, Choi J, Lee J H, Lee K J, Shin S H, Ko E J, Park I, Kim C, Hwang J J, Lee J S, Song S Y, Jeong S Y and Choi E K 2015 J. Control Release 207 77
[52] Almeida J P M, Figueroa E R and Drezek R A 2014 Nanomed. Nanotech. Biol. Med. 10 503
[53] Melancon M P, Lu W, Yang Z, Zhang R, Cheng Z, Elliot A M, Stafford J, Olson T, Zhang J Z and Li C 2008 Mol. Cancer Ther. 7 1730
[54] Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z Y, Zhang H, Xia Y and Li X 2007 Nano Lett. 7 1318
[55] Khlebtsov N and Dykman L 2011 Chem. Soc. Rev. 40 1647
[56] Dreaden E C, Mackey M A, Huang X, Kang B and El-Sayed M A 2011 Chem. Soc. Rev. 40 3391
[57] Lim Z Z J, Li J E J, Ng C T, Yung L Y L and Bay B H 2011 Acta Pharmacol. Sin. 32 983
[58] Boisselier E and Astruc D 2009 Chem. Soc. Rev. 38 1759
[59] Zhang J Z 2010 J. Phys. Chem. Lett. 1 686
[60] Kennedy L C, Bickford L R, Lewinski N A, Coughlin A J, Hu Y, Day E S, West J L and Drezek R A 2011 Small 7 169
[61] Alkilany A M, Thompson L B, Boulos S P, Sisco P N and Murphy C J 2012 Adv. Drug Deliv. Rev. 64 190
[62] Krishnan S R and George S K 2014 Pharmacology and Therapeutics, 8th edn. (Europe:InTech) pp. 235-253
[63] Huang X, Jain P K, El-Sayed I H and El-Sayed M A 2008 Lasers Med. Sci. 23 217
[64] Wang Y, Black K C L, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S Y, Li M, Kim P, Li Z Y, Wang L V, Liu Y and Xia Y 2013 ACS Nano 7 2068
[65] Khlebtsov B, Zharov V, Melnikov A, Tuchin V and Khlebtsov N 2010 Nanotechnology 17 5167
[66] Hong G, Robinson J T, Zhang Y, Diao S, Antaris A L, Wang Q and Dai H 2012 Angew. Chemie Int. Ed. 51 9818
[67] Yasun E, Kang H, Erdal H, Cansiz S, Ocsoy I, Huang Y F and Tan W 2013 Interface Focus 3 20130006
[68] Smith A M, Mancini M C and Nie S 2009 Nat. Nanotechnol. 4 710
[69] Welsher K, Sherlock S P and Dai H 2011 Proc. Natl. Acad. Sci. USA 108 8943
[70] Sun Y, Mayers B and Xia Y 2003 Adv. Mater. 15 641
[71] Abdollahi S N, Naderi M and Amoabediny G 2013 Colloids Surfaces A:Physicochem. Eng. Asp. 436 1069
[72] Zhou L, Yu X F, Fu X F, Hao Z H and Li K Y 2008 Chin. Phys. Lett. 25 1776
[73] Vongsavat V, Vittur B M, Bryan W W, Kim J H and Lee T R 2011 ACS Appl. Mater. Interfaces 3 3616
[74] Zhong X, Chai Y Q and Yuan R 2014 Talanta 128 9
[75] Liang Z, Susha A and Caruso F 2003 Chem. Mater. 15 3176
[76] Cheng K and Sun S 2010 Nano Today 5 183
[77] Ma L N, Liu D J and Wang Z X 2010 Chin. J. Anal. Chem. 38 1
[78] Fan H J, Gosele U and Zacharias M 2007 Small 3 1660
[79] Xie H, Larmour I A, Chen Y C, Wark A W, Tileli V, McComb D W, Faulds K and Graham D 2013 Nanoscale 5 765
[80] Song C, Zhao G, Zhang P and Rosi N L 2010 J. Am. Chem. Soc. 132 14033
[81] An K and Hyeon T 2009 Nano Today 4 359
[82] Lou X W, Archer L A and Yang Z 2008 Adv. Mater. 20 3987
[83] Parsons J, Burrows C P, Sambles J R and Barnes W L 2010 J. Mod. Opt. 57 356
[84] Van De Hulst H C 1981 Light Scattering by Small Particles (New York:Dover)
[85] Mie G 1908 Ann. Phys. 25 377
[86] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles, Vol. 1 (New York:Wiley and Sons, Inc.)
[87] Wriedt T 2012 Mie theory:A review. Springer Ser. Opt. Sci. 169 53
[88] Quinten M 2011 Optical Properties of Nanoparticle Systems:Mie and Beyond (New York:Wiley)
[89] Hergert W and Wriedt T 2012 The Mie Theory:Mie Theory Basics Appl. pp. 53-71
[90] Papoff F and Hourahine B 2011 Opt. Express 19 21432
[91] Xu H X 2003 Phys. Lett. Sect. A:Gen. At. Solid State Phys. 312 411
[92] Salandrino A, Fardad S and Christodoulides D N 2012 J. Opt. Soc. Am. B 29 855
[93] Zienkiewicz O C, Taylor R L and Zhu J Z 2013 Finite Element Method its Basis Fundam. pp. 493-543
[94] Morgan K, Hassan O and Weatherill N P 1981 The Finite Element Method, Acad. Eng. Polish, Acad. Sci. Chin., Acad. Sci. Natl. Acad. Sci. Italy (Academia dei Lincei) 35 110
[95] Nikishkov G 2004 ''Introduction to the finite element method'', University Aizu, pp. 1-70
[96] Polyanskiy M N 2016 Refractive index database, http://refractiveindex.info
[97] Jianming J 2002 The Finite Element Method in Electromagnetics, 2nd edn. (Urbana-Champaign:Wiley-IEEE Press)
[98] Volakis J L, Chatterjee A and Kempel L C 1998 Finite element method for electro-magnetics:antennas, microwave circuits, and scattering applications (Ann Arbor:Wiley-IEEE Press)
[99] Monk P 2003 Finite element methods for Maxwell's equations (Oxford:Oxford University Press)
[100] Davletshin Y 2010 Modeling the optical properties of a single gold nanorod for use in biomedical applications (Toronto:Ryerson University) pp. 10-35
[101] Wang S, Xu H and Ye J 2014 Phys. Chem. 16 12275
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[7] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[10] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
No Suggested Reading articles found!