ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A 12.1-W SESAM mode-locked Yb:YAG thin disk laser |
Yingnan Peng(彭英楠)1, Zhaohua Wang(王兆华)2, Dehua Li(李德华)2, Jiangfeng Zhu(朱江峰)1, Zhiyi Wei(魏志义)1,2 |
1. School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China; 2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror (SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit.
|
Received: 18 November 2015
Revised: 29 December 2015
Accepted manuscript online:
|
PACS:
|
42.55.-f
|
(Lasers)
|
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant No. 61210017). |
Corresponding Authors:
Zhiyi Wei
E-mail: zywei@iphy.ac.cn
|
Cite this article:
Yingnan Peng(彭英楠), Zhaohua Wang(王兆华), Dehua Li(李德华), Jiangfeng Zhu(朱江峰), Zhiyi Wei(魏志义) A 12.1-W SESAM mode-locked Yb:YAG thin disk laser 2016 Chin. Phys. B 25 054205
|
[1] |
Zhuang W Z, Chang M T, Liang H C and Chen Y F 2013 Opt. Lett. 38 2596
|
[2] |
Lucca A, Debourg G, Jacquemet M, Druon F, Balembois F, Georges P, Camy P, Doualan J L and Moncorgé R 2004 Opt. Lett. 29 2767
|
[3] |
Zhou B B, Wei Z Y, Zou Y W, Zhang Y D, Zhong X, Bourdet G L and Wang J L 2010 Opt. Lett. 35 288
|
[4] |
Fu Y J, Jian W, Zheng K, Yan F P, Chang D Y and Jian S S 2005 Chin. Phys. B 14 2338
|
[5] |
Lv Z G, Teng H, Wang L N, Wang R, Wang J L and Wei Z Y 2015 Chin. Phys. B 24 114203
|
[6] |
Xing F, Qiang L, Yan X P and Gong M L 2011 Chin. Phys. B 20 114210
|
[7] |
Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J and Tünnermann A 2010 Opt. Lett. 35 94
|
[8] |
Russbueldt P, Mans T, Weitenberg J, Hoffmann H and Poprawe R 2010 Opt. Lett. 35 4169
|
[9] |
Saraceno C J, Emaury F, Heckl O H, Baer C R, Hoffmann M, Schriber C, Golling M, Südmeyer T and Keller U 2012 Opt. Express 20 23535
|
[10] |
Giesen A, Hügel H, Voss A, Wittig K, Brauch U and Opower H 1994 Appl. Phys. B 58 365
|
[11] |
Erhard S, Contag K, Giesen A, Johannsen I, Karszewski M, Rupp T and Stewen C 1999 Advanced Solid State Lasers 26 39
|
[12] |
Der Au J A, Spuhler G J, Sudmeyer T, Paschotta R, Hovel R, Moser M, Erhard S, Karszewski M, Giesen A and Keller U 2000 Opt. Lett. 25 859
|
[13] |
Saraceno C J, Emaury F, Schriber C, Hoffmann M, Golling M, Sudmeyer T and Keller U 2014 Opt. Lett. 39 9
|
[14] |
Pronin O, Brons J, Grasse C, Pervak V, Boehm G, Amann M C, Kalashnikov V L, Apolonski A and Krausz F 2011 Opt. Lett. 36 4746
|
[15] |
Baer C R E, Krankel C, Heckl O H, Golling M, Sudmeyer T, Peters R, Petermann K, Huber G and Keller U 2009 Opt. Express 17 10725
|
[16] |
Saraceno C J, Heckl O H, Baer C R E, Golling M, Sudmeyer T, Beil K, Krankel C, Petermann K, Huber G and Keller U 2011 Opt. Express 19 20288
|
[17] |
Saraceno C J, Heckl O H, Baer C R E, Schriber C, Golling M, Beil K, Krankel C, Sudmeyer T, Huber G and Keller U 2012 Appl. Phys. B 106 559
|
[18] |
Marchese S V, Baer C R E, Peters R, Krankel C, Engqvist A G, Golling M, Maas D, Petermann K, Sudmeyer T, Huber G and Keller U 2007 Opt. Express 15 16966
|
[19] |
Baer C R E, Krankel C, Saraceno C J, Heckl O H, Golling M, Sudmeyer T, Peters R, Petermann K, Huber G and Keller U 2009 Opt. Lett. 34 2823
|
[20] |
Baer C R E, Krankel C, Saraceno C J, Heckl O H, Golling M, Peters R, Petermann K, Sudmeyer T, Huber G and Keller U 2010 Opt. Lett. 35 2302
|
[21] |
Brunner F, Sudmeyer T, Innerhofer E, Morier-Genoud F, Paschotta R, Kisel V E, Shcherbitsky V G, Kuleshov N V, Gao J, Contag K, Giesen A and Keller U 2002 Opt. Lett. 27 1162
|
[22] |
Palmer G, Schultze M, Siegel M, Emons M, Bünting U and Morgner U 2008 Opt. Lett. 33 1608
|
[23] |
Heckl O H, Krankel C, Baer C R E, Saraceno C J, Sudmeyer T, Petermann K, Huber G and Keller U 2010 Opt. Express 18 19201
|
[24] |
Zhang J, Brons J, Lilienfein N, Fedulova E, Pervak V, Bauer D, Sutter D, Wei Z, Apolonski A and Pronin O 2015 Opt. Lett. 40 1627
|
[25] |
Magni V 1987 J. Opt. Soc. Am. A 4 1962
|
[26] |
Saraceno C J, Schriber C, Mangold M, Hoffmann M, Heckl O H, Baer C R, Golling M, SüDmeyer T and Keller U 2012 IEEE J. Selec. Top. Quantum Electron. 18 29
|
[27] |
Saraceno C, Schriber C, Mangold M, Hoffmann M, Heckl O, Baer C, Golling M, Südmeyer T and Keller U 2011 CLEO: Science and Innovations, 1-6 May 2011, Baltimore, Maryland United States, CFO1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|