|
|
Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm |
Xin-Ze Lu(陆欣泽)1, Gui-Fang Shao(邵桂芳)2, Liang-You Xu(许两有)2, Tun-Dong Liu(刘暾东)2, Yu-Hua Wen(文玉华)1 |
1. Department of Physics, Xiamen University, Xiamen 361005, China; 2. Department of Automation, Xiamen University, Xiamen 361005, China |
|
|
Abstract Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically explore the stable structure and segregation behavior of tetrahexahedral Pt-Pd-Cu-Au quaternary alloy nanoparticles. Three alloy nanoparticles consisting of 443 atoms, 1417 atoms, and 3285 atoms are considered and compared. The preferred positions of atoms in the nanoparticles are analyzed. The simulation results reveal that Cu and Au atoms tend to occupy the surface, Pt atoms preferentially occupy the middle layers, and Pd atoms tend to segregate to the inner layers. Furthermore, Au atoms present stronger surface segregation than Cu ones. This study provides a fundamental understanding on the structural features and segregation phenomena of multi-metallic nanoparticles.
|
Received: 09 December 2015
Revised: 07 January 2016
Accepted manuscript online:
|
PACS:
|
36.40.-c
|
(Atomic and molecular clusters)
|
|
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
52.65.Pp
|
(Monte Carlo methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271156, 11474234, and 61403318) and the Natural Science Foundation of Fujian Province of China (Grant Nos. 2013J01255 and 2013J06002). |
Corresponding Authors:
Gui-Fang Shao
E-mail: gfshao@xmu.edu.cn
|
Cite this article:
Xin-Ze Lu(陆欣泽), Gui-Fang Shao(邵桂芳), Liang-You Xu(许两有), Tun-Dong Liu(刘暾东), Yu-Hua Wen(文玉华) Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm 2016 Chin. Phys. B 25 053601
|
[1] |
Murray R W 2008 Chem. Rev. 108 2688
|
[2] |
Zhou Z Y, Tian N, Li J T, Broadwell I and Sun SG 2011 Chem. Soc. Rev. 40 4167
|
[3] |
Wu W K, Zhang L N, Ren H R, Zhang K, Li H and He Y Z 2015 Phys. Chem. Chem. Phys. 17 13380
|
[4] |
Deng L, Hu W Y, Deng H Q and Xiao S F 2010 J. Phys. Chem. C 114 11026
|
[5] |
Huang R, Wen Y H, Zhu Z Z and Sun S G 2012 J. Phys. Chem. C 116 8664
|
[6] |
Yun K, Cho Y H, Cha P R, Lee J, Nam H S, Oh J S, Choi J H and Lee S C 2012 Acta Mater. 60 4908
|
[7] |
Shao G F, Zheng W X, Tu Na Na, Liu T D and Wen Y H 2015 Acta Phys. Sin. 64 013602 (in Chinese)
|
[8] |
Gao X X, Jia Y H, Li G P, Cho S J and Kim H 2011 Chin. Phys. Lett. 28 033601
|
[9] |
Chen M S, Cai Y, Yan Z, Gath K K, Axnanda S and Wayne G D 2007 Surf. Sci. 601 5326
|
[10] |
Pal U, Garcia-Serrano J, Casarrubias-Segura G, Koshizaki N, Sasaki T and Terahuchi S 2004 Sol. Energ. Mat Sol. C 81 339
|
[11] |
Sekhon J S and Verma S S 2011 Plasmonics 6 311
|
[12] |
Wang L and Yamauchi Y 2010 J. Am. Chem. Soc. 132 13636
|
[13] |
Guo S J, Zhang S, Sun X L and Sun S H 2011 J. Am. Chem. Soc. 133 15354
|
[14] |
Zhu L S and Zhao S J 2014 Chin. Phys. B 23 063601
|
[15] |
Lumley R N, Morton A J and Polmear I J 2002 Acta Mater. 50 3597
|
[16] |
Cao P, Zhang M L, Han W, Yan Y D and Chen L J 2013 T. Nonferr. Metal. Soc. 23 861
|
[17] |
Mazumder V, Chi M F, More K L, and Sun S H 2010 Angew. Chem. Int. Edit. 49 9368
|
[18] |
Iglesias O and Labarta A 2001 Phys. Rev. B 63 184416
|
[19] |
Qin L J, Zhang Y H, Huang S P, Tian H P and Wang P 2010 Phys. Rev. B 82 075413
|
[20] |
Yuge K 2010 J. Phys.: Condens. Matter 22 245401
|
[21] |
Cho S H 2005 Phys. Med. Biol. 50 N163
|
[22] |
Guo J Y, Xu C X, Hu A M, Oakes K D and Sheng F Y 2012 J. Phys. Chem. Solids 73 1350
|
[23] |
Radillo-Diaz A, Coronado Y, Péreza L A and Garzón I L 2009 Eur. Phys. J. D 52 127
|
[24] |
Paz-Borbo'n L O, Guptab A and Johnston R L 2008 J. Mater. Chem. 18 4154
|
[25] |
Bruma A, Ismail R, Paz-Borbón L O, Arslan H, Barcaro G, Fortunelli A, Lia Z Y and Johnston R L 2013 Nanoscale 5 646
|
[26] |
Yu J M, Chen Z H, Ni Y and Li Z X 2012 Hum. Reprod. 27 25
|
[27] |
Liu T D, Zheng J W, Shao G, Fan T E and Wen Y H 2015 Chin. Phys. B 24 033601
|
[28] |
Wen Y H, Zhang Y, Zheng J C, Zhu Z Z and Sun S G 2009 J. Phys. Chem. C 113 20611
|
[29] |
Ikeda H, Qi Y, Cagin T, Samwer K, Johnson W L and Goddard W A 1999 Phys. Rev. Lett. 82 2900
|
[30] |
Sankaranarayanan S K R S, Bhethanabotla V R and Joseph B 2005 Phys. Rev. B 71 195415
|
[31] |
Kimura Y, Qi Y, Cagin T and Goddard III W 1998 Technical Report (Vol. 3) (Pasadena: Caltech ASCI) pp. 1-29
|
[32] |
Tian N, Zhou Z Y, Sun S G, Ding Y and Wang Z L 2007 Science 316 732
|
[33] |
Metropolis N, Rosenbluth A W, Rosenbluth M N and Teller A H 1953 J. Chem. Phys. 21 1087
|
[34] |
Kirkpatrick S, Gelatt C D Jr. and Vecchi M P 1983 Science 220 671
|
[35] |
Li Z W, Kong X S, Liu W, Liu C S and Fang Q F 2014 Chin. Phys. B 23 106107
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|