Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 050201    DOI: 10.1088/1674-1056/25/5/050201
GENERAL Prev   Next  

Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch

Safa Khari, Zahra Rahmani, Behrooz Rezaie
Intelligent Systems Research Group, Faculty of Electrical and Computer Engineering, Babol Noshrivani University of Technology, Shariati Av., Babol, Iran
Abstract  

An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system. In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response, and robustness against uncertainties.

Keywords:  chaos      rod-type plasma torch      intelligent integral terminal sliding mode control      Bee algorithm  
Received:  10 December 2015      Revised:  18 January 2016      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  05.45.Gg (Control of chaos, applications of chaos)  
  45.80.+r (Control of mechanical systems)  
  52.75.Hn (Plasma torches)  
Corresponding Authors:  Zahra Rahmani     E-mail:  zrahmani@nit.ac.ir

Cite this article: 

Safa Khari, Zahra Rahmani, Behrooz Rezaie Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch 2016 Chin. Phys. B 25 050201

[1] Sparrow C 1982 The Lorenz Equation: Bifurcation, Chaos and Strange Attractors (New York: Springer)
[2] Chen G and Ueta T 1999 Int. J. Bifurc. Chaos 9 1465
[3] Hu Y A and Li H Y 2011 Chin. Phys. Lett. 28 120508
[4] Li J M and Guo X Y 2011 Chin. Phys. Lett. 28 120503
[5] Dadras S, Momeni H R and Majid V J 2009 Chaos Solition Fractal 41 1857
[6] Khari S, Rahmani Z and Rezaie B 2016 Trans. Inst. Measure. Control 38 150
[7] Yong Z 2006 Chin. Phys. 15 2549
[8] Hong Y, Yang G, Cheng D and Spurgeon S 2005 Asian J. Control 7 177
[9] Ting C H, Chang J L and Chen Y P 2012 Asian J. Control 14 1
[10] Liang Y and Jianying Y 2011 Int. J. Robust Nonlinear Control 21 1865
[11] Pourmahmood M and Feizi H 2012 Chin Phys. B 21 060506
[12] Venkataraman S T and Gulati S 1992 Proceedings of American Control Conference, Chicago IL USA p. 891
[13] Yu X and Man Z 1996 Int. J. Control 66 1165
[14] Yu X and Man Z 2000 Proceedings of 2000 Asian Control Conference, July 2-4, Shanghai, China, p. 12
[15] Yu X and Man Z IEEE Trans. Cir. Syst. 49 261
[16] Feng Y, Yu X and Man Z 2002 Automatica 38 2159
[17] Yu X and Man Z 2002 IEEE Trans. Cir. Syst. 49 261
[18] Konishi K, Hirai M, and Kokame H 1998 Phys. Lett. A 245 511
[19] Ghorui S A and Das K 2004 IEEE Trans. Plasma Science 32 296
[20] Pai N S, Yau H T and Kuo C L 2010 Expert Syst. Appl. 37 8278
[21] Liaw D C, Chang S T, Li H Y, Huang H J and Tzeng C C 2009 J. Aeronauti. Astronaut. Aviat. 41 129
[22] Ghorui S, Sahasrabudhe S N, Muryt P S, Das A K and Venkatramani N 2000 IEEE Trans. Plasma Science 28 253
[23] Ghorui S, Sahasrabudhe S N, Muryt P S and Das A K 2004 IEEE Trans. Plasma Science 32 308
[24] Heimann R B 2008 Plasma-Spray Coating: Principles and Applications (Wiley Ltd Press)
[25] Jang J S R 1993 IEEE Trans. Syst. Man Cybernetics 23 665
[26] Zhang Y, Chai T and Wang H 2011 IEEE Trans. Neural Netw. 22 1783
[27] Pham D T and Castellani M 2009 Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Science 223 2919
[28] Nelles O 2001 Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models (Germany: Springer-Verlag)
[29] Loganathanl C and Girija K V 2014 Int. J. Eng. Res. Appl. 4 2248
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!