Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037301    DOI: 10.1088/1674-1056/25/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Suppression of Andreev conductance in a topological insulator-superconductor nanostep junction

Yi-Jie Zheng(郑翌洁), Jun-Tao Song(宋俊涛), Yu-Xian Li(李玉现)
College of Physics & Information Engineering and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China
Abstract  When two three-dimensional topological insulators (TIs) are brought close to each other with their surfaces aligned, the surfaces form a line junction. Similarly, three TI surfaces, not lying in a single plane, can form an atomic-scale nanostep junction. In this paper, Andreev reflection in a TI-TI-superconductor nanostep junction is investigated theoretically. Because of the existence of edge states along each line junction, the conductance for a nanostep junction is suppressed. When the incident energy (ε) of an electron is larger than the superconductor gap (Δ), the Andreev conductance in a step junction is less than unity while for a plane junction it is unity. The Andreev conductance is found to depend on the height of the step junction. The Andreev conductance exhibits oscillatory behavior as a function of the junction height with the amplitude of the oscillations remaining unchanged when ε=0, but decreasing for ε=Δ, which is different from the case of the plane junction. The height of the step is therefore an important parameter for Andreev reflection in nanostep junctions, and plays a role similar to that of the delta potential barrier in normal metal-superconductor plane junctions.
Keywords:  topological insulator      nanostep junction      suppression of Andreev conductance  
Received:  05 August 2015      Revised:  10 November 2015      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.25.+i (Surface conductivity and carrier phenomena)  
  73.40.-c (Electronic transport in interface structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204065 and 11474085) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2013205168 and A2014205005).
Corresponding Authors:  Yu-Xian Li     E-mail:  yxli@mail.hebtu.edu.cn

Cite this article: 

Yi-Jie Zheng(郑翌洁), Jun-Tao Song(宋俊涛), Yu-Xian Li(李玉现) Suppression of Andreev conductance in a topological insulator-superconductor nanostep junction 2016 Chin. Phys. B 25 037301

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[4] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[7] Zhang H, Liu C, Qi X, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[8] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[9] König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[10] König M, Buhmann H, Molenkamp L W, Hughes T L, Liu C X, Qi X L and Zhang S C 2008 J. Phys. Soc. Jpn. 77 031007
[11] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[12] Chen Y L, et al. 2009 Science 325 178
[13] Takahashi R and Murakami S 2011 Phys. Rev. Lett. 107 166805
[14] Alpichshev Z, Analytis J G, Chu J H, Fisher I R, Chen Y L, Shen Z X, Fang A and Kapitulnik A 2010 Phys. Rev. Lett. 104 016401
[15] Alos-Palop M, Tiwari R P and Blaauboer M 2013 Phys. Rev. B 87 035432
[16] Blonder G E, TinkhamMand Klapwijk TM1982 Phys. Rev. B 25 4515
[17] de Jong M J M and Beenakker C W J 1995 Phys. Rev. Lett. 74 1657
[18] Soulen R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A and Coey J M D 1998 Science 282 85
[19] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[20] Zareyan M, Mohammadpour H and Moghaddam A G 2008 Phys. Rev. B 78 193406
[21] Zhang Q, Fu D, Wang B, Zhang R and Xing D Y 2008 Phys. Rev. Lett. 101 047005
[22] Schelter J, Trauzettel B and Recher P 2012 Phys. Rev. Lett. 108 106603
[23] Sen D and Deb O 2012 Phys. Rev. B 85 245402
[24] Nussbaum J, Schmidt T L, Bruder C and Tiwari R P 2014 Phys. Rev. B 90 045413
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[3] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[4] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[5] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[6] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[7] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[8] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[9] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[10] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[11] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[12] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[13] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[14] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[15] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
No Suggested Reading articles found!