Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 030701    DOI: 10.1088/1674-1056/25/3/030701
GENERAL Prev   Next  

STED microscopy based on axially symmetric polarized vortex beams

Zhehai Zhou(周哲海), Lianqing Zhu(祝连庆)
Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China
Abstract  A stimulated emission depletion (STED) microscopy scheme using axially symmetric polarized vortex beams is proposed based on unique focusing properties of such kinds of beams. The concept of axially symmetric polarized vortex beams is first introduced, and the basic principle about the scheme is described. Simulation results for several typical beams are then shown, including radially polarized vortex beams, azimuthally polarized vortex beams, and high-order axially symmetric polarized vortex beams. The results indicate that sharper doughnut spots and thus higher resolutions can be achieved, showing more flexibility than previous schemes based on flexible modulation of both phase and polarization for incident beams.
Keywords:  stimulated emission depletion (STED)      super-resolution microscopy      axially symmetric polarized vortex beams  
Received:  03 November 2015      Revised:  14 December 2015      Accepted manuscript online: 
PACS:  07.60.-j (Optical instruments and equipment)  
  42.15.Eq (Optical system design)  
  42.25.Ja (Polarization)  
  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 61475021), the Natural Science Foundation of Beijing, China (Grant No. 4152015), the Program for New Century Excellent Talents in Universities of China (Grant No. NCET-13-0667), and the Top Young Talents Support Program of Beijing, China (Grant No. CIT&TCD201404113).
Corresponding Authors:  Zhehai Zhou, Lianqing Zhu     E-mail:  zhouzhehai@bistu.edu.cn;zhulianqing@sina.com

Cite this article: 

Zhehai Zhou(周哲海), Lianqing Zhu(祝连庆) STED microscopy based on axially symmetric polarized vortex beams 2016 Chin. Phys. B 25 030701

[1] Müller T, Schumann C and Kraegeloh A 2012 Chem. Phys. Chem. 13 1986
[2] Hell S W and Wichmann J 1994 Opt. Lett. 19 780
[3] Klar T A and Hell S W 1999 Opt. Lett. 24 954
[4] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J and Hess H F 2003 Science 313 1642
[5] Rust M J, Bates M and Zhuang X W 2006 Nat. Methods 3 793
[6] Wildanger D, Patton B R, Schill H, Marseglia L, Hadden J P, Knauer S, Schönle A, Rarity J G, O'Brien J O, Hell S W and Smith J M 2012 Adv. Mater. 24 OP309
[7] Beijersbergen M W, Coerwinkel R P C and Kristensen M 1994 Opt. Commun. 112 321
[8] Heckenberg N R, McDuff R and Smith C P 1992 Opt. Lett. 17 221
[9] Török P and Munro P R T 2004 Opt. Express 12 3605
[10] Gao W R 2008 J. Opt. Soc. AM. A 25 1378
[11] Hao X A, Kuang C F, Wang T T and Liu X 2010 J. Opt. 12 115707
[12] Xue Y, Kuang C F, Li S, Gu Z and Liu X 2012 Opt. Express 20 17653
[13] Liu Y, Kuang C F and Liu X 2015 J. Opt. 17 045609
[14] Chen H, Hao J J, Zhang B, Xu J, Ding J P and Wang H T 2011 Opt. Lett. 36 3179
[15] Zhou Z H, Guo Y K and Zhu L Q 2014 Chin. Phys. B 23 044201
[1] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[2] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[3] Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明). Chin. Phys. B, 2022, 31(5): 050602.
[4] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[5] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[6] Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process
Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云). Chin. Phys. B, 2020, 29(8): 084206.
[7] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[8] Development of a 170-mm hollow corner cube retroreflector for the future lunar laser ranging
Yun He(何芸), Qi Liu(刘祺), Jing-Jing He(何静静), Ming Li(黎明), Hui-Zong Duan(段会宗), Hsien-Chi Yeh(叶贤基), Jun Luo(罗俊). Chin. Phys. B, 2018, 27(10): 100701.
[9] Performance analysis of surface plasmon resonance sensor with high-order absentee layer
Qing-Qing Meng(孟庆卿), Xin Zhao(赵鑫), Shu-Jing Chen(陈淑静), Cheng-You Lin(林承友), Ying-Chun Ding(丁迎春), Zhao-Yang Chen(陈朝阳). Chin. Phys. B, 2017, 26(12): 124213.
[10] Nested grazing incidence optics for x ray detection
Lin-Sen Li(李林森), Peng-Fei Qiang(强鹏飞), Li-Zhi Sheng(盛立志), Yong-An Liu(刘永安), Zhe Liu(刘哲), Duo Liu(刘舵), Bao-Sheng Zhao(赵宝升), Chun-Min Zhang(张淳民). Chin. Phys. B, 2017, 26(10): 100703.
[11] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[12] Density and temperature reconstruction of a flame-induced distorted flow field based on background-oriented schlieren (BOS) technique
Guang-Ming Guo(郭广明), Hong Liu(刘洪). Chin. Phys. B, 2017, 26(6): 064701.
[13] Ultrafast optical beam deflection in a pump probe configuration
Lingliang Liang(梁玲亮), Jinshou Tian (田进寿), Tao Wang(汪韬), Shengli Wu(吴胜利), Fuli Li(李福利), Junfeng Wang(王俊锋), Guilong Gao(高贵龙). Chin. Phys. B, 2016, 25(9): 090602.
[14] Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers
Chen Le (陈乐), Wang Qing-Kang (王庆康), Shen Xiang-Qian (沈向前), Chen Wen (陈文), Huang Kun (黄堃), Liu Dai-Ming (刘代明). Chin. Phys. B, 2015, 24(10): 104201.
[15] Design and fabrication of structural color by local surface plasmonic meta-molecules
Ma Ya-Qi (马亚琪), Shao Jin-Hai (邵金海), Zhang Ya-Feng (张亚峰), Lu Bing-Rui (陆冰睿), Zhang Si-Chao (张思超), Sun Yan (孙艳), Qu Xin-Ping (屈新萍), Chen Yi-Fang (陈宜方). Chin. Phys. B, 2015, 24(8): 080702.
No Suggested Reading articles found!