Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117309    DOI: 10.1088/1674-1056/25/11/117309
Special Issue: TOPICAL REVIEW — Topological electronic states
TOPICAL REVIEW—Topological electronic states Prev   Next  

Thermoelectric effects and topological insulators

Yong Xu(徐勇)1,2,3
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
3 RIKEN Center for Emergent Matter Science(CEMS), Wako, Saitama 351-0198, Japan
Abstract  

The recent discovery of topological insulators (TIs) offers new opportunities for the development of thermoelectrics, because many TIs (like Bi2Te3) are excellent thermoelectric (TE) materials. In this review, we will first describe the general TE properties of TIs and show that the coexistence of the bulk and boundary states in TIs introduces unusual TE properties, including strong size effects and an anomalous Seebeck effect. Importantly, the TE figure of merit zT of TIs is no longer an intrinsic property, but depends strongly on the geometric size. The geometric parameters of two-dimensional TIs can be tuned to enhance zT to be significantly greater than 1. Then a few proof-of-principle experiments on three-dimensional TIs will be discussed, which observed unconventional TE phenomena that are closely related to the topological nature of the materials. However, current experiments indicate that the metallic surface states, if their advantage of high mobility is not fully utilized, would be detrimental to TE performance. Finally, we provide an outlook for future work on topological materials, which offers great possibilities to discover exotic TE effects and may lead to significant breakthroughs in improving zT.

Keywords:  thermoelectric effect      topological insulator      surface states  
Received:  02 June 2016      Revised:  03 July 2016      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  71.90.+q (Other topics in electronic structure)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: 

Project supported by the National Thousand-Young-Talents Program, China and Tsinghua University Initiative Scientific Research Program, China.

Corresponding Authors:  Yong Xu     E-mail:  yongxu@mail.tsinghua.edu.cn

Cite this article: 

Yong Xu(徐勇) Thermoelectric effects and topological insulators 2016 Chin. Phys. B 25 117309

[1] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 163
[2] Bell L E 2008 Science 321 1457
[3] Snyder G J and Toberer E S 2008 Nature Mater. 7 105
[4] Ioffe A F 1957 Semiconductor Thermoelements, and Thermoelectric Cooling (Infosearch, ltd.)
[5] Rowe D M 1995 CRC Handbook of Thermoelectrics (CRC press)
[6] Goldsmid H J 2010 Introduction to Thermoelectricity (Vol. 121) (Springer)
[7] Goldsmid H J and Douglas R W 1954 British J. Appl. Phys. 5 386
[8] Hicks L and Dresselhaus M 1993 Phys. Rev. B 47 12727
[9] Hicks L and Dresselhaus M 1993 Phys. Rev. B 47 16631
[10] Chen J, Zhang G and Li B 2010 Nano Lett. 10 3978
[11] Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 204705
[12] Chen J, Zhang G and Li B 2009 Appl. Phys. Lett. 95 073117
[13] Shi L, Yao D, Zhang G and Li B 2010 Appl. Phys. Lett. 96 173108
[14] Yu J K, Mitrovic S, Tham D, Varghese J and Heath J R 2010 Nature Nanotechnol. 5 718
[15] Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P and Yang P 2010 Nano Lett. 10 4279
[16] Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 104508
[17] Chen J, Zhang G and Li B 2012 Nano Lett. 12 2826
[18] Wingert M C, Chen Z C, Dechaumphai E, Moon J, Kim J H, Xiang J and Chen R 2011 Nano Lett. 11 5507
[19] Morelli D, Jovovic V and Heremans J 2008 Phys. Rev. Lett. 101 035901
[20] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[21] Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, et al. 2016 Science 351 141
[22] Kane C L and Mele E J 2005 Phys. Rev, Lett. 95 226801
[23] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[24] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[25] Qi X L and Zhang S C 2010 Phys. Today 63 33
[26] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[27] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[28] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[29] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature Phys. 5 398
[28] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nature Phys. 5 438
[29] Wang J, Lian B, Zhang H, Xu Y and Zhang S C 2013 Phys. Rev. Lett. 111 136801
[30] Zhang H, Xu Y, Wang J, Chang K and Zhang S C 2014 Phys. Rev. Lett. 112 216803
[31] Zhang H, Wang J, Xu G, Xu Y and Zhang S C 2014 Phys. Rev. Lett. 112 096804
[32] Zhao L, Wang J, Liu J, Xu Y, Gu B L, Xue Q K and Duan W 2015 Phys. Rev. B 92 041408
[33] Xu Y, Gan Z and Zhang S C 2014 Phys. Rev. Lett. 112 226801
[34] Ghaemi P, Mong R S and Moore J E 2010 Phys. Rev. Lett. 105 166603
[35] Xu Y, Chen X, Gu B L and Duan W 2009 Appl. Phys. Lett. 95 233116
[36] Xu Y, Chen X, Wang J S, Gu B L and Duan W 2010 Phys. Rev. B 81 195425
[37] Zhu H, Xu Y, Gu B L and Duan W 2012 New J. Phys. 14 013053
[38] Chen X, Xu Y, Zou X, Gu B L and Duan W 2013 Phys. Rev. B 87 155438
[39] Huang H, Xu Y, Zou X, Wu J and Duan W 2013 Phys. Rev. B 87 205415
[40] Li D, Xu Y, Chen X, Li B and Duan W 2014 Appl. Phys. Lett. 104 143108
[41] Zou X, Chen X, Huang H, Xu Y and Duan W 2015 Nanoscale 7 8776
[42] Chen X B and Duan W 2015 Acta Phys. Sin. 64 186302(in Chinese)
[43] Paulsson M and Datta S 2003 Phys. Rev. B 67 241403
[44] Xu Y, Wang J S, Duan W, Gu B L and Li B 2008 Phys. Rev. B 78 224303
[45] Xu Y, Li Z and Duan W 2014 Small 10 2182
[46] Takahashi R and Murakami S 2010 Phys. Rev. B 81 161302
[47] Murakami S, Takahashi R, Tretiakov O, Abanov A and Sinova J 2011 J. Phys.:Conf. Ser. 334 012013
[48] Takahashi R and Murakami S 2012 Semicond. Sci. Technol. 27 124005
[49] Chang P H, Bahramy M S, Nagaosa N and Nikolic B K 2014 Nano Lett. 14 3779
[50] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[51] Venkatasubramanian R, Siivola E, Colpitts T and O'quinn B 2001 Nature 413 597
[52] Huang B L and Kaviany M 2008 Phys. Rev. B 77 125209
[53] Hor Y S, Richardella A, Roushan P, Xia Y, Checkelsky J G, Yazdani A, Hasan M Z, Ong N P and Cava R J 2009 Phys. Rev. B 79 195208
[54] Zahid F and Lake R 2010 Appl. Phys. Lett. 97 212102
[55] Yu C, Zhang G, Peng L M, Duan W and Zhang Y W 2014 Appl. Phys. Lett. 105 023903
[56] Rittweger F, Hinsche N F, Zahn P and Mertig I 2014 Phys. Rev. B 89 035439
[57] Osterhage H, Gooth J, Hamdou B, Gwozdz P, Zierold R and Nielsch K 2014 Appl. Phys. Lett. 105 123117
[58] Gooth J, Gluschke J G, Zierold R, Leijnse M, Linke H and Nielsch K 2015 Semicond. Sci. Technol. 30 015015
[59] Yu C, Zhang G, Zhang Y W and Peng L M 2015 Nano Energy 17 104
[60] Hinsche N F, Zastrow S, Gooth J, Pudewill L, Zierold R, Rittweger F, Rauch T, Henk J, Nielsch K and Mertig I 2015 ACS Nano 9 4406
[61] Shi H, Parker D, Du M H and Singh D J 2015 Phys. Rev. Appl. 3 014004
[62] Liu W, Chi H, Walrath J, Chang A, Stoica V A, Endicott L, Tang X, Goldman R and Uher C 2016 Appl. Phys. Lett. 108 043902
[63] Liang J, Cheng L, Zhang J, Liu H and Zhang Z 2016 Nanoscale 8 8855
[64] Zhang J, Feng X, Xu Y, Guo M, Zhang Z, Ou Y, Feng Y, Li K, Zhang H, Wang L, et al. 2015 Phys. Rev. B 91 075431
[65] Guo M, Wang Z, Xu Y, Huang H, Zang Y, Liu C, Duan W, Gan Z, Zhang S C, He K, et al. 2016 New J. Phys. 18 015008
[66] Liu J, Xu Y, Wu J, Gu B L, Zhang S and Duan W 2014 Acta Cryst. C 70 118
[67] Shi W J, Liu J, Xu Y, Xiong S J, Wu J and Duan W 2015 Phys. Rev. B 92 205118
[68] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, et al. 2015 Science 348 109
[69] Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Xu Y, Zhang S C, Duan W and Rubio A 2014 Phys. Rev. B 90 121408
[70] Si C, Liu J, Xu Y, Wu J, Gu B L and Duan W 2014 Phys. Rev. B 89 115429
[71] Li Y, Chen P, Zhou G, Li J, Wu J, Gu B L, Zhang S and Duan W 2012 Phys. Rev. Lett. 109 206802
[72] Li Y, Tang P, Chen P, Wu J, Gu B L, Fang Y, Zhang S and Duan W 2013 Phys. Rev. B 87 245127
[73] Wang J, Xu Y and Zhang S C 2014 Phys. Rev. B 90 054503
[74] Wu S C, Shan G and Yan B 2014 Phys. Rev. Lett. 113 256401
[75] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nature Mater. 14 1020
[76] Xu Y, Tang P and Zhang S C 2015 Phys. Rev. B 92 081112
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[3] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[4] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[5] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[6] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[7] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[8] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[9] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[10] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[11] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[12] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[13] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[14] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[15] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
No Suggested Reading articles found!