Special Issue:
TOPICAL REVIEW — Topological electronic states
|
TOPICAL REVIEW—Topological electronic states |
Prev
Next
|
|
|
Thermoelectric effects and topological insulators |
Yong Xu(徐勇)1,2,3 |
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
3 RIKEN Center for Emergent Matter Science(CEMS), Wako, Saitama 351-0198, Japan |
|
|
Abstract The recent discovery of topological insulators (TIs) offers new opportunities for the development of thermoelectrics, because many TIs (like Bi2Te3) are excellent thermoelectric (TE) materials. In this review, we will first describe the general TE properties of TIs and show that the coexistence of the bulk and boundary states in TIs introduces unusual TE properties, including strong size effects and an anomalous Seebeck effect. Importantly, the TE figure of merit zT of TIs is no longer an intrinsic property, but depends strongly on the geometric size. The geometric parameters of two-dimensional TIs can be tuned to enhance zT to be significantly greater than 1. Then a few proof-of-principle experiments on three-dimensional TIs will be discussed, which observed unconventional TE phenomena that are closely related to the topological nature of the materials. However, current experiments indicate that the metallic surface states, if their advantage of high mobility is not fully utilized, would be detrimental to TE performance. Finally, we provide an outlook for future work on topological materials, which offers great possibilities to discover exotic TE effects and may lead to significant breakthroughs in improving zT.
|
Received: 02 June 2016
Revised: 03 July 2016
Accepted manuscript online:
|
PACS:
|
73.50.Lw
|
(Thermoelectric effects)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
71.90.+q
|
(Other topics in electronic structure)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
Fund: Project supported by the National Thousand-Young-Talents Program, China and Tsinghua University Initiative Scientific Research Program, China. |
Corresponding Authors:
Yong Xu
E-mail: yongxu@mail.tsinghua.edu.cn
|
Cite this article:
Yong Xu(徐勇) Thermoelectric effects and topological insulators 2016 Chin. Phys. B 25 117309
|
[1] |
Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 163
|
[2] |
Bell L E 2008 Science 321 1457
|
[3] |
Snyder G J and Toberer E S 2008 Nature Mater. 7 105
|
[4] |
Ioffe A F 1957 Semiconductor Thermoelements, and Thermoelectric Cooling (Infosearch, ltd.)
|
[5] |
Rowe D M 1995 CRC Handbook of Thermoelectrics (CRC press)
|
[6] |
Goldsmid H J 2010 Introduction to Thermoelectricity (Vol. 121) (Springer)
|
[7] |
Goldsmid H J and Douglas R W 1954 British J. Appl. Phys. 5 386
|
[8] |
Hicks L and Dresselhaus M 1993 Phys. Rev. B 47 12727
|
[9] |
Hicks L and Dresselhaus M 1993 Phys. Rev. B 47 16631
|
[10] |
Chen J, Zhang G and Li B 2010 Nano Lett. 10 3978
|
[11] |
Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 204705
|
[12] |
Chen J, Zhang G and Li B 2009 Appl. Phys. Lett. 95 073117
|
[13] |
Shi L, Yao D, Zhang G and Li B 2010 Appl. Phys. Lett. 96 173108
|
[14] |
Yu J K, Mitrovic S, Tham D, Varghese J and Heath J R 2010 Nature Nanotechnol. 5 718
|
[15] |
Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P and Yang P 2010 Nano Lett. 10 4279
|
[16] |
Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 104508
|
[17] |
Chen J, Zhang G and Li B 2012 Nano Lett. 12 2826
|
[18] |
Wingert M C, Chen Z C, Dechaumphai E, Moon J, Kim J H, Xiang J and Chen R 2011 Nano Lett. 11 5507
|
[19] |
Morelli D, Jovovic V and Heremans J 2008 Phys. Rev. Lett. 101 035901
|
[20] |
Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
|
[21] |
Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, et al. 2016 Science 351 141
|
[22] |
Kane C L and Mele E J 2005 Phys. Rev, Lett. 95 226801
|
[23] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[24] |
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[25] |
Qi X L and Zhang S C 2010 Phys. Today 63 33
|
[26] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[27] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[28] |
Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
|
[29] |
Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature Phys. 5 398
|
[28] |
Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nature Phys. 5 438
|
[29] |
Wang J, Lian B, Zhang H, Xu Y and Zhang S C 2013 Phys. Rev. Lett. 111 136801
|
[30] |
Zhang H, Xu Y, Wang J, Chang K and Zhang S C 2014 Phys. Rev. Lett. 112 216803
|
[31] |
Zhang H, Wang J, Xu G, Xu Y and Zhang S C 2014 Phys. Rev. Lett. 112 096804
|
[32] |
Zhao L, Wang J, Liu J, Xu Y, Gu B L, Xue Q K and Duan W 2015 Phys. Rev. B 92 041408
|
[33] |
Xu Y, Gan Z and Zhang S C 2014 Phys. Rev. Lett. 112 226801
|
[34] |
Ghaemi P, Mong R S and Moore J E 2010 Phys. Rev. Lett. 105 166603
|
[35] |
Xu Y, Chen X, Gu B L and Duan W 2009 Appl. Phys. Lett. 95 233116
|
[36] |
Xu Y, Chen X, Wang J S, Gu B L and Duan W 2010 Phys. Rev. B 81 195425
|
[37] |
Zhu H, Xu Y, Gu B L and Duan W 2012 New J. Phys. 14 013053
|
[38] |
Chen X, Xu Y, Zou X, Gu B L and Duan W 2013 Phys. Rev. B 87 155438
|
[39] |
Huang H, Xu Y, Zou X, Wu J and Duan W 2013 Phys. Rev. B 87 205415
|
[40] |
Li D, Xu Y, Chen X, Li B and Duan W 2014 Appl. Phys. Lett. 104 143108
|
[41] |
Zou X, Chen X, Huang H, Xu Y and Duan W 2015 Nanoscale 7 8776
|
[42] |
Chen X B and Duan W 2015 Acta Phys. Sin. 64 186302(in Chinese)
|
[43] |
Paulsson M and Datta S 2003 Phys. Rev. B 67 241403
|
[44] |
Xu Y, Wang J S, Duan W, Gu B L and Li B 2008 Phys. Rev. B 78 224303
|
[45] |
Xu Y, Li Z and Duan W 2014 Small 10 2182
|
[46] |
Takahashi R and Murakami S 2010 Phys. Rev. B 81 161302
|
[47] |
Murakami S, Takahashi R, Tretiakov O, Abanov A and Sinova J 2011 J. Phys.:Conf. Ser. 334 012013
|
[48] |
Takahashi R and Murakami S 2012 Semicond. Sci. Technol. 27 124005
|
[49] |
Chang P H, Bahramy M S, Nagaosa N and Nikolic B K 2014 Nano Lett. 14 3779
|
[50] |
Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
|
[51] |
Venkatasubramanian R, Siivola E, Colpitts T and O'quinn B 2001 Nature 413 597
|
[52] |
Huang B L and Kaviany M 2008 Phys. Rev. B 77 125209
|
[53] |
Hor Y S, Richardella A, Roushan P, Xia Y, Checkelsky J G, Yazdani A, Hasan M Z, Ong N P and Cava R J 2009 Phys. Rev. B 79 195208
|
[54] |
Zahid F and Lake R 2010 Appl. Phys. Lett. 97 212102
|
[55] |
Yu C, Zhang G, Peng L M, Duan W and Zhang Y W 2014 Appl. Phys. Lett. 105 023903
|
[56] |
Rittweger F, Hinsche N F, Zahn P and Mertig I 2014 Phys. Rev. B 89 035439
|
[57] |
Osterhage H, Gooth J, Hamdou B, Gwozdz P, Zierold R and Nielsch K 2014 Appl. Phys. Lett. 105 123117
|
[58] |
Gooth J, Gluschke J G, Zierold R, Leijnse M, Linke H and Nielsch K 2015 Semicond. Sci. Technol. 30 015015
|
[59] |
Yu C, Zhang G, Zhang Y W and Peng L M 2015 Nano Energy 17 104
|
[60] |
Hinsche N F, Zastrow S, Gooth J, Pudewill L, Zierold R, Rittweger F, Rauch T, Henk J, Nielsch K and Mertig I 2015 ACS Nano 9 4406
|
[61] |
Shi H, Parker D, Du M H and Singh D J 2015 Phys. Rev. Appl. 3 014004
|
[62] |
Liu W, Chi H, Walrath J, Chang A, Stoica V A, Endicott L, Tang X, Goldman R and Uher C 2016 Appl. Phys. Lett. 108 043902
|
[63] |
Liang J, Cheng L, Zhang J, Liu H and Zhang Z 2016 Nanoscale 8 8855
|
[64] |
Zhang J, Feng X, Xu Y, Guo M, Zhang Z, Ou Y, Feng Y, Li K, Zhang H, Wang L, et al. 2015 Phys. Rev. B 91 075431
|
[65] |
Guo M, Wang Z, Xu Y, Huang H, Zang Y, Liu C, Duan W, Gan Z, Zhang S C, He K, et al. 2016 New J. Phys. 18 015008
|
[66] |
Liu J, Xu Y, Wu J, Gu B L, Zhang S and Duan W 2014 Acta Cryst. C 70 118
|
[67] |
Shi W J, Liu J, Xu Y, Xiong S J, Wu J and Duan W 2015 Phys. Rev. B 92 205118
|
[68] |
Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, et al. 2015 Science 348 109
|
[69] |
Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Xu Y, Zhang S C, Duan W and Rubio A 2014 Phys. Rev. B 90 121408
|
[70] |
Si C, Liu J, Xu Y, Wu J, Gu B L and Duan W 2014 Phys. Rev. B 89 115429
|
[71] |
Li Y, Chen P, Zhou G, Li J, Wu J, Gu B L, Zhang S and Duan W 2012 Phys. Rev. Lett. 109 206802
|
[72] |
Li Y, Tang P, Chen P, Wu J, Gu B L, Fang Y, Zhang S and Duan W 2013 Phys. Rev. B 87 245127
|
[73] |
Wang J, Xu Y and Zhang S C 2014 Phys. Rev. B 90 054503
|
[74] |
Wu S C, Shan G and Yan B 2014 Phys. Rev. Lett. 113 256401
|
[75] |
Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nature Mater. 14 1020
|
[76] |
Xu Y, Tang P and Zhang S C 2015 Phys. Rev. B 92 081112
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|