Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107201    DOI: 10.1088/1674-1056/25/10/107201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The spin Hall effect in single-crystalline gold thin films

Dai Tian(田岱)1,2, Caigan Chen(陈才干)1,2, Hua Wang(王华)1,2, Xiaofeng Jin(金晓峰)1,2
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
2 Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
Abstract  

The spin Hall effect has been investigated in 10-nm-thick epitaxial Au (001) single crystal films via H-pattern devices, whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizing the in-plane geometry parameters of the devices, we explicitly extract the spin Hall effect contribution from the ballistic and bypass contribution which were previously reported to be dominating the non-local voltage. Furthermore, we calculate a lower limit of the spin Hall angle of 0.08 at room temperature. Our results indicate that the giant spin Hall effect in Au thin films is dominated not by the interior defects scattering, but by the surface scattering. Besides, our results also provide an additional experimental method to determine the magnitude of spin Hall angle unambiguously.

Keywords:  gold thin film      spin Hall effect      surface scattering  
Received:  26 May 2016      Revised:  31 May 2016      Accepted manuscript online: 
PACS:  72.15.-v (Electronic conduction in metals and alloys)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921400 and 2011CB921802) and the National Natural Science Foundation of China (Grant Nos. 11374057, 11434003, and 11421404).

Corresponding Authors:  Xiaofeng Jin     E-mail:  xfjin@fudan.edu.cn

Cite this article: 

Dai Tian(田岱), Caigan Chen(陈才干), Hua Wang(王华), Xiaofeng Jin(金晓峰) The spin Hall effect in single-crystalline gold thin films 2016 Chin. Phys. B 25 107201

[1] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[2] Dyakonov M I and Perel V I 1971 Phys. Lett. 35 459
[3] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnr S von, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[4] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[5] Hoffmann A 2013 IEEE Trans. Magn. 49 5172
[6] Smit J 1958 Physica 24 39
[7] Berger L 1970 Phys. Rev. B 2 4559
[8] Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154
[9] Sundaram G and Niu Q 1999 Phys. Rev. B 59 14915
[10] Niimi Y, Suzuki H, Kawanishi Y, Omori Y, Valet T, Fert A and Otani Y 2014 Phys. Rev. B 89 054401
[11] Gradhand M, Fedorov D V, Zahn P and Mertig I 2010 Phys. Rev. B 81 245109
[12] Niimi Y, Morota M, Wei D H, Deranlot C, Basletic M, Hamzic A, Fert A and Otani Y 2011 Phys. Rev. Lett. 106 126601
[13] Maekawa S 2006 Concepts in Spin Electronic (New York: Oxford University Press) p. 357
[14] Wang X, Xiao J, Manchon A and Maekawa S 2013 Phys.Rev. B. 87 081407
[15] Mihajlović G, Pearson J E, Garcia M A, Bader S D and Hoffmann A 2009 Phys. Rev. Lett. 103 166601
[16] Seki T, Sugai I, Hasegawa Y, Mitani S and Takanashi K 2010 Solid State Commun. 150 496
[17] Seki T, Hasegawa Y, Mitani S, Takahashi S, Imamura H, Maekawa S, Nitta J and Takanashi K 2008 Nature Mater. 7 125
[18] Gu B, Sugai I, Ziman T, Guo G. Y, Nagaosa N, Seki T, Takanashi K and Maekawa S 2010 Phys. Rev. Lett. 105 216401
[19] Ji Y, Hoffmann A, Jiang J S and Bader S D 2004 Appl. Phys. Lett. 85 6218
[20] Takahashi S and Maekawa S 2003 Phys. Rev. B. 67 052409
[21] Fukuma Y, Wang L, Idzuchi H and Otani Y 2010 Appl. Phys. Lett. 97 012507
[22] Abanin D A, Shytov A V, Levitov L S and Halperin B I 2009 Phys. Rev. B 79 035304
[23] Qu D, Huang S Y, Miao B F, Huang S X and Chien C L 2014 Phys. Rev. B 89 140407
[24] Obstbaum M, Härtinger M, Bauer H, Meier T, Swientek F, Back C and Woltersdorf G 2014 Phys. Rev. B 89 060407
[25] Isasa M, Villamor E, Hueso L Gradhand E, M and Casanova F 2015 Phys. Rev. B 91 024402
[26] Shull C G, Chase C T and Myers F E 1943 Phys. Rev. 63 29
[27] Elliott R J 1954 Phys. Rev. 96 266
[28] Niimi Y, Wei D, Idzuchi H, Wakamura T, Kato T and Otani Y 2013 Phys. Rev. Lett. 110 016805
[29] Pierre F, Gougam A B, Anthore A, Pothier H, Esteve D and Birge N O 2003 Phys. Rev. B 68 085413
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[3] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[4] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[5] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[6] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[7] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[8] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[9] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[10] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[11] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[12] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[13] Inverse spin Hall effect in ITO/YIG exited by spin pumping and spin Seebeck experiments
Kejian Zhu(朱科建), Weijian Lin(林伟坚), Yangtao Su(苏仰涛), Haibin Shi(石海滨), Yang Meng(孟洋), Hongwu Zhao(赵宏武). Chin. Phys. B, 2019, 28(1): 017201.
[14] The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance
Yun Kang(康韵), Hai Zhong(钟海), Runrun Hao(郝润润), Shujun Hu(胡树军), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Yin Zhang(张引), Xiangrong Wang(王向荣), Shishen Yan(颜世申), Yong Wu(吴勇), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Yong Jiang(姜勇), Liangmo Mei(梅良模). Chin. Phys. B, 2017, 26(4): 047202.
[15] Quantum spin Hall and quantum valley Hall effects in trilayer graphene and their topological structures
Majeed Ur Rehman, A A Abid. Chin. Phys. B, 2017, 26(12): 127304.
No Suggested Reading articles found!