Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 106601    DOI: 10.1088/1674-1056/25/10/106601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Radial transport dynamics studies of SMBI with a newly developed TPSMBI code

Ya-Hui Wang(王亚辉)1,2,3, Wen-Feng Guo(郭文峰)1,3, Zhan-Hui Wang(王占辉)4, Qi-Long Ren(任启龙)1, Ai-Ping Sun(孙爱萍)4, Min Xu(许敏)4, Ai-Ke Wang(王爱科)4, Nong Xiang(项农)1,3
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China;
4 Southwestern Institute of Physics, Chengdu 610041, China
Abstract  In tokamak plasma fueling, supersonic molecule beam injection (SMBI) with a higher fueling efficiency and a deeper penetration depth than the traditional gas puffing method has been developed and widely applied to many tokamak devices. It is crucial to study the transport dynamics of SMBI to improve its fueling efficiency, especially in the high confinement regime. A new one-dimensional (1D) code of TPSMBI has also been developed recently based on a six-field SMBI model in cylindrical coordinate. It couples plasma density and heat radial transport equations together with neutral density transport equations for both molecules and atoms and momentum radial transport equations for molecules. The dominant particle collisional interactions between plasmas and neutrals, such as molecule dissociation, atom ionization and charge-exchange effects, are included in the model. The code is verified to be correct with analytical solutions and also benchmarked well with the trans-neut module of BOUT++ code. Time-dependent radial transport dynamics and mean profile evolution are studied during SMBI with the TPSMBI code in both slab and cylindrical coordinates. Along the SMBI path, plasma density increases due to particle fuelling, while plasma temperature decreases due to heat cooling. Being different from slab coordinate, the curvature effect leads to larger front densities of molecule and atom during SMBI in cylindrical coordinate simulation.
Keywords:  transport      plasma physics      SMBI simulation      TPSMBI  
Received:  15 April 2016      Revised:  22 May 2016      Accepted manuscript online: 
PACS:  66.10.cd (Thermal diffusion and diffusive energy transport)  
  52.25.Ya (Neutrals in plasmas)  
  52.65.-y (Plasma simulation)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575055, 11375053, and 11475219) and the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2013GB111005, 2014GB108004, and 2015GB110001).
Corresponding Authors:  Wen-Feng Guo, Zhan-Hui Wang     E-mail:  wfguo@ipp.ac.cn;zhwang@swip.ac.cn

Cite this article: 

Ya-Hui Wang(王亚辉), Wen-Feng Guo(郭文峰), Zhan-Hui Wang(王占辉), Qi-Long Ren(任启龙), Ai-Ping Sun(孙爱萍), Min Xu(许敏), Ai-Ke Wang(王爱科), Nong Xiang(项农) Radial transport dynamics studies of SMBI with a newly developed TPSMBI code 2016 Chin. Phys. B 25 106601

[1] Zheng X W, Li J G, Hu J S, Li J H, Ding R, Cao B and Wu J H 2013 Plasma Phys. Control. Fusion 55 115010
[2] Sajjad S, Gao X, Ling B, Bhatti S H and Ang T 2009 Phys. Lett. A 373 1133
[3] Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Murakami M, Gohil P, Burrell K H, Greenfield C M, Groebner R J, Hsieh C L, La Haye R J, Parks P B, Staebler G M, Staebler G M, DIII-D term, Schmidt G L, Ernst D R, Synakowski E J and Porkolab M 2000 Phys. Plasmas 7 1878
[4] Sun H J, Ding X T, Yao L H, Feng B B, Liu Z T, Duan X R and Yang Q W 2010 Plasma Phys. Control. Fusion 52 045003
[5] YAO L H, Zhao D W, Feng B B, Chen C Y, Zhou Y, Han X Y, Li Y G, Jerome B and Duan X R 2010 Plasma Sci. Technol. 12 529
[6] Takenaga H and JT-60 Team 2009 J. Nucl. Mater. 390-391 869
[7] Cheng J, Yan L W, Dong J Q, Hong W Y, Yao L H, Huang Z H, Zhao K J, Gao J M, Chen C Y, Feng B B, Nie L, Xiao W W, Yang Q W, Ding X T and Duan X R 2013 J. Nucl. Mater. 438 S1200
[8] Xiao W W, Diamond P H and Kim W C 2014 Nucl. Fusion 54 023003
[9] Cui X W, Cui Z Y, Feng B B, Pan Y D, Zhou H Y, Sun P, Fu B Z, Lu P, Dong Y B, Gao J M, Song S D and Yang Q W 2013 Chin. Phys. B 22 125201
[10] Dong J F, Tang N Y, Li W, Luo J L, Xiao Z G, Yao L H, Feng B B, Li B and Qin Y W 2002 Plasma Phys. Control. Fusion 44 371
[11] Yao L H, Feng B B, Chen C Y, Shi Z J, Chen C Y, Shi Z B, Yuan B S, Zhou Y, Duan X R, Sun H J, Lu J, Jiao Y M, Ni G Q, Lu H Y, Xiao W W, Li W, Pan Y D, Hong W Y, Ran H, Ding X T and Liu Y 2007 Nucl. Fusion 47 1399
[12] Gao X, Jie Y X, Xia C Y, et al. 2000 Nucl. Fusion 40 1875
[13] Kim J, Jeon Y M, Xiao W W, et al. 2012 Nucl. Fusion 52 114011
[14] Yao L H and BaldzuHn J 2003 Plasma Sci. Technol. 5 1932
[15] Lang P T, Neuhauser J, Bucalossi J, et al. 2005 Plasma Phys. Control. Fusion 47 1495
[16] Pégourié B, Tsitrone E, Dejarnac R, Bucalossi J, Martin G, Gunn J, Frigione D, Reiter D, Ghendrih P and Clément C 2003 J. Nucl. Mater. 313-316 539
[17] Soukhanovskii V A, Maingi R, Bush C E, Raman R, Bell R E, Kaita R, Kugel H W, Lasnier C J, Leblanc B P, Menard J E, Paul S F, Roquemore A L and the NSTX Research Team 2007 J. Nucl. Mater. 363-365 432
[18] Zang L G, Ohshima S, Mizuuchi T, et al. 2014 Phys. Plasmas 21 042308
[19] Xiao J S, Yang Z J, Zhuang G, Hu Q M, Feng X D and Liu M H 2014 Plasma Sci. Technol. 16 17
[20] Parks P B, Gerdin G A, Vahala L L and Elcashlan A G 1994 Nucl. Fusion 34 417
[21] Parks P B and Baylor L R 2005 Phys. Rev. Lett. 94 125002
[22] Jiao Y M, Zhou Y, Yao L H and Dong J Q 2003 Plasma Phys. Control. Fusion 45 2001
[23] Xu X Q, Nevins W M, Cohen R H, Rongnlien T D and Umansky M V 2004 Contrib. Plasma Phys. 44 105
[24] Rognlien T D, Braams B J and Knoll D A 1996 Contrib. Plasma Phys. 36 106
[25] Vold E L, Najmabadi F and Conn R W 1992 Nucl. Fusion 32 1433
[26] Wang Z H, Xu X Q, Xia T Y and Rognlien T D 2014 Nucl. Fusion 54 043019
[27] Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H and Sun W G 2015 Phys. Plasmas 22 012503
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[3] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[4] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[5] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[6] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[7] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[8] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[9] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[10] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[11] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[12] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[15] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
No Suggested Reading articles found!