Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 106401    DOI: 10.1088/1674-1056/25/10/106401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dynamic behaviors of water contained in calcium—silicate—hydrate gel at different temperatures studied by quasi-elastic neutron scattering spectroscopy

Zhou Yi(易洲), Pei-Na Deng(邓沛娜), Li-Li Zhang(张丽丽), Hua Li(李华)
Department of Physics, Jinan University, Guangzhou 510632, China
Abstract  The dynamic behaviors of water contained in calcium-silicate-hydrate (C-S-H) gel with different water content values from 10% to 30% (by weight), are studied by using an empirical diffusion model (EDM) to analyze the experimental data of quasi-elastic neutron scattering (QENS) spectra at measured temperatures ranging from 230 K to 280 K. In the study, the experimental QENS spectra with the whole Q-range are considered. Several important parameters including the bound/immobile water elastic coefficient A, the bound water index BWI, the Lorentzian with a half-width at half-maximum (HWHM) Γ1(Q) and Γ2(Q), the self-diffusion coefficients Dt1 and Dt2 of water molecules, the average residence times τ01 and τ02, and the proton mean squared displacement (MSD) <u2> are obtained. The results show that the QENS spectra can be fitted very well not only for small Q ( ≤ 1 Å-1) but also for large Q. The bound/immobile water fraction in a C-S-H gel sample can be shown by the fitted BWI. The distinction between bound/immobile and mobile water, which includes confined water and ultra-confined water, can be seen by the fitted MSD. All the MSD tend to be the smallest value below 0.25 Å2 (the MSD of bound/immobile water) as the Q increases to 1.9 Å-1, no matter what the temperature and water content are. Furthermore, by the abrupt changes of the fitted values of Dt1, τ01, and Γ1(Q), a crossover temperature at 250 K, namely the liquid-to-crystal-like transition temperature, can be identified for confined water in large gel pores (LGPs) and/or small gel pores (SGPs) contained in the C-S-H gel sample with 30% water content.
Keywords:  dynamics of water      quasi-elastic neutron scattering spectra      empirical diffusion model      C-S-H gel pastes  
Received:  07 April 2016      Revised:  27 June 2016      Accepted manuscript online: 
PACS:  64.70.pv (Colloids)  
  64.70.qj (Dynamics and criticality)  
  61.05.fg (Neutron scattering (including small-angle scattering))  
Corresponding Authors:  Hua Li     E-mail:  tlihua@jnu.edu.cn

Cite this article: 

Zhou Yi(易洲), Pei-Na Deng(邓沛娜), Li-Li Zhang(张丽丽), Hua Li(李华) Dynamic behaviors of water contained in calcium—silicate—hydrate gel at different temperatures studied by quasi-elastic neutron scattering spectroscopy 2016 Chin. Phys. B 25 106401

[1] Bergman R and Swenson J 2000 Nature 20 403
[2] Roverea M and Gallo P 2003 Eur. Phys. J. E 12 77
[3] Chen S H, Mallamace F, Mou C Y, Broccio M, Corsaro C, Faraone A and Liu L 2006 Proc. Natl. Acad. Sci. USA 35 103
[4] Bertrand C E, Zhang Y and Chen S H 2013 Phys. Chem. Chem. Phys. 15 721
[5] Thomas J J, FitzGerald S A, Neumann D A and Livingston R A 2001 J. Am. Ceram. Soc. 84 1811
[6] Bordallo H N, Aldridge L P and Desmedt A 2006 J. Phys. Chem. B 110 17966
[7] Li H, Fratini E, Chiang W S, Baglioni P, Eugene M and Chen S H 2012 Phys. Rev. E 86 061505
[8] Ridi F, Luciani P, Fratini E and Baglioni P 2009 J. Phys. Chem. B 113 3080
[9] Ridi F, Fratini E and Baglioni P 2011 J. Coll. Int. Sci. 357 255
[10] Korb J P, McDonald P J, Monteilhet L, Kalinichev A G and Kirkpatrick R J 2007 Cem. Concr. Res. 37 348
[11] Korb J P 2009 Curr. Opin. Colloid Interface Sci. 14 192
[12] Cerveny S, Igor S A, Dolado J S, Gaitero J J, Alegría A and Colmenero J 2011 J. Chem Phys. 134 034509
[13] Monasterio M, Jansson H, Gaitero J J, Dolado J S and Cerveny S 2013 J. Chem. Phys. 139 164714
[14] Youssef M, Pellenq R J M and Yildiz B 2011 J. Am. Chem. Soc. 133 2499
[15] Thomas J J 2007 J. Am. Ceram. Soc. 90 3282
[16] Jennings H M, Thomas J J, Gevrenov J S, Constantinides G and Ulm F J 2007 Cem. Concr. Res. 37 329
[17] McDonald P J, Rodin V and Valori A 2010 Cem. Concr. Res. 40 1656
[18] Richardson I G 2004 Cem. Concr. Res. 34 1733
[19] Tennis P D and Jennings H M 2000 Cem. Concr. Res. 30 855
[20] Jennings H M 2008 Cem. Concr. Res. 38 275
[21] Pellenq R J M, Kushima A, Shahsavari R, Vliet K J V, Buehler M J, Yip S and Ulm F J 2009 Proc. Natl. Acad. Sci. USA 38 106
[22] FitzGerald S A, Neumann D A, Rush J J, Bentz D P and Livingston R A 1998 Chem. Mater. 10 397
[23] Chen S H, Liao C, Sciortino F, Gallo P and Tartaglia P 1999 Phys. Rev. E 59 6708
[24] Li H, Zhang L L, Yi Z, Fratini E, Baglioni P and Chen S H 2015 J. Coll. Int. Sci. 452 2
[25] Qomi M J A, Bauchy M, Ulm F J and Pellenq R J M 2014 J. Chem. Phys. 140 054515
[26] Mamontovand E and Herwig K W 2011 Rev. Sci. Instrum. 82 085109
[27] Zhang Y, Lagi M, Fratini E, Baglioni P, Mamontov E and Chen S H 2009 Phys. Rev. E 79 040201
[28] Yi Z, Zhang L L and Li H 2015 Acta Phys. Sin. 64 056101 (in Chinese)
[29] Eckold G, Schober H and Nagler S E 2010 Studying Kinetics with Neutrons - Prospects for Time-Resolved Neutron Scattering (London: Springer) pp. 19-75 by V K Peterson.
[30] Singwi K S and Sjölander A 1960 Phys. Rev. 119 863
[31] Snyder K A and Bentz D P 2004 Cem. Concr. Res. 34 2045
[32] Zhang Y, Lagi M, Ridi F, Fratini E, Baglioni P, Mamontov E and Chen S H 2008 J. Phys: Condens. Matter 20 502101
[33] Limmer D T and Chandler D 2012 J. Chem. Phys. 137 044509
[34] Erko M, Wallacher D, Hoell A, Hauβ T, Zizak I and Paris O 2012 Phys. Chem. Chem. Phys. 14 3852
[1] A revised jump-diffusion and rotation-diffusion model
Hua Li(李华), Yu-Hang Chen(陈昱沆), Bin-Ze Tang(唐宾泽). Chin. Phys. B, 2019, 28(5): 056105.
No Suggested Reading articles found!