Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014502    DOI: 10.1088/1674-1056/25/1/014502
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Two kinds of generalized gradient representationsfor holonomic mechanical systems

Feng-Xiang Mei(梅凤翔)1 and Hui-Bin Wu(吴惠彬)2
1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. School of Mathematics, Beijing Institute of Technology, Beijing 100081, China
Abstract  

Two kinds of generalized gradient systems are proposed and the characteristics of the two systems are studied. The conditions under which a holonomic mechanical system can be considered as one of the two generalized gradient systems are obtained. The characteristics of the generalized gradient systems can be used to study the stability of the holonomic system. Some examples are given to illustrate the application of the results.

Keywords:  holonomic mechanical system      generalized gradient system      Lyapunov function      stability  
Received:  19 July 2015      Revised:  02 September 2015      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11272050).

Corresponding Authors:  Hui-Bin Wu     E-mail:  huibinwu@bit.edu.cn

Cite this article: 

Feng-Xiang Mei(梅凤翔) and Hui-Bin Wu(吴惠彬) Two kinds of generalized gradient representationsfor holonomic mechanical systems 2016 Chin. Phys. B 25 014502

[1] Hirsch M W and Smale S 1974 Differential Equations, Dynamical Systems, and Linear Algebra (New York: Springer-Verlag)
[2] McLachlan R I, Quispel G R W and Robidoux N 1999 Phil. Tran. R. Soc. Lond A 357 1021
[3] Quispel G R W and Capel H W 1996 Phys. Lett. A 218 223
[4] Quispel G R W and Turner G S 1996 J. Phys. A: Math. Gen. 29 L341
[5] Hong J L, Zhai S X and Zhang J J 2011 SIAM J. Numer. Anal. 49 2017
[6] Mei F X 2012 Mechanics in Engineering 34 89 (in Chinese)
[7] Mei F X and Wu H B 2012 J. Dynamics Control 10 289 (in Chinese)
[8] Mei F X, Cui J C and Wu H B 2012 Trans. Beijing Inst. Tech. 32 1298 (in Chinese)
[9] Lou Z M and Mei F X 2012 Acta Phys. Sin. 61 024502 (in Chinese)
[10] Mei F X 2013 Mechanics in Engineering 35 79 (in Chinese)
[11] Chen X W, Zhao G L and Mei F X 2013 Nonlinear Dyn. 73 579
[12] Mei F X and Wu H B 2013 Sci. Sin. Phys. Mech. Astron. 43 538 (in Chinese)
[13] Mei F X 2013 Analytical Mechanics II (Beijing: Beijing Institute of Technology Press) (in Chinese)
[14] Mei F X and Wu H B 2013 Acta Phys. Sin. 62 214501 (in Chinese)
[15] Ge W K, Xue Y and Lou Z M 2014 Acta Phys. Sin. 63 110202 (in Chinese)
[16] Mei F X and Wu H B 2015 Chin. Phys. B 24 054501
[17] Mei F X and Wu H B 2015 Acta Phys. Sin. 64 184501 (in Chinese)
[18] Mei F X and Wu H B 2015 Chin. Phys. B 24 104502
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
No Suggested Reading articles found!