Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 013102    DOI: 10.1088/1674-1056/25/1/013102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Accurate spectroscopic constants of the lowest two electronic states in S2 molecule with explicitly correlated method

Changli Wei(魏长立), Xiaomei Zhang(张晓美), Dajun Ding(丁大军), Bing Yan(闫冰)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  

A computational scheme for accurate spectroscopic constants was presented in this work and applied to the lowest two electronic states of sulfur dimer. A high-level ab initio calculation utilizing explicitly correlated multireference configuration interaction method (MRCI-F12) was performed to compute the potential energy curves (PECs) of the ground triplet X3Σg- and first excited singlet a1Δg states of sulfur dimer with cc-pCVXZ-F12(X=m T, Q) basis sets. The effects of Davidson modification, core-valence correlation correction, and scalar relativistic correction on the spectroscopic constants were examined. The vibration-rotation spectra of the two electronic states were provided. Our computational results show excellent agreement with existing available experimental values, and the errors of main spectroscopic constants are within 0.1% order of magnitude. The present computational scheme is cheap and accurate, which is expected for extensive investigations on the potential energy curves or surfaces of other molecular systems.

Keywords:  sulfur dimer      MRCI-F12      spectroscopic parameter      core-valence correlation  
Received:  30 August 2015      Revised:  16 September 2015      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  31.15.vn (Electron correlation calculations for diatomic molecules)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grand No. 11574114) and the Natural Science Foundation of Jilin Province, China (Grand No. 20150101003JC).

Corresponding Authors:  Bing Yan     E-mail:  yanbing@jlu.edu.cn

Cite this article: 

Changli Wei(魏长立), Xiaomei Zhang(张晓美), Dajun Ding(丁大军), Bing Yan(闫冰) Accurate spectroscopic constants of the lowest two electronic states in S2 molecule with explicitly correlated method 2016 Chin. Phys. B 25 013102

[1] A'Hearn M F, Feldman P D and Schleicher D G 1983 Astrophys. J. 274 99
[2] Grim R J A and Greenbery J M 1987 Astron. Astrophys. 181 155
[3] Kim S J, A'Hean M F and Larson S M 1990 Icarus 87 440
[4] Maurellis A N and Cravens T E 2001 Icarus 154 350
[5] Liszt H S 1978 Astrophys. J. 219 67
[6] Mitchell G F 1984 Astrophys. J. 287 665
[7] Frederix P W J M, Yang C H, Groenenboom G C and Parker D H 2009 J. Phys. Chem. A 113 14995
[8] Lewis J S and Kreimendahl F A 1980 Icarus 42 330
[9] Zolotov M Y 1985 Lunar Planet. Sci. 16 942
[10] Shnitko I, Fulara J and Garkusha I 2008 Chem. Phys. 346 8
[11] Glassgold A E 1996 Annu. Rev. Astron. Astrophys. 34 241
[12] Graham J I 1910 Proc. R. Soc. London Ser. A 84 311
[13] Bondybey V E and English J H 1980 J. Chem. Phys. 72 3113
[14] Patiño B and Barrow R F 1982 J. Chem. Soc. Faraday Trans. 78 1271
[15] Matsumi Y, Munakata T and Kasuya T 1984 J. Chem. Phys. 81 1108
[16] Green M E and Western C M 1997 J. Chem. Soc. Faraday Trans. 93 365
[17] Green M E and Western C M 1996 J. Chem. Phys. 104 848
[18] Fink E H, Kruse H and Ramsay D A 1986 J. Mol. Spectrosc. 119 377
[19] Setzer K D, Kalb M and Fink E H 2003 J. Mol. Spectrosc. 221 127
[20] Liao C L and Ng C Y 1986 J. Chem. Phys. 84 778
[21] Huber K P and Herzberg G 1979 Molecular Spectra and MolecularStructure IV, Constants of Diatomic Molecules
[22] Peterson D A and Schlie L A 1980 J. Chem. Phys. 73 1551
[23] Setzer K D, Fink E H and Ramsay D A 1999 J. Mol. Spectrosc. 198 163
[24] Wildt J, Fink E H, Winter R and Zabel F 1983 Chem. Phys. 80 167
[25] Cheah S L, Lee Y P and Ogilvie J F 2000 J. Quant. Spectrosc. Radiat. Transfer 64 467
[26] Antonov I O, Azyazov V N and Ufimtsev N I 2003 J. Chem. Phys. 119 10638
[27] Slanger T G, Cosby P C, Huestis D L and Osterbrock D E 2000 J. Geophys. Res. 105 20557
[28] Goldman A, Stephen T M, Rothman L S, Giver L P, Mandin J Y, Gamache R R, Romsland C P and Murcray F J 2003 J. Geophys. Res. 105 20557
[29] Zhang L L, Gao S B, Meng Q T and Song Y Z 2015 Chin. Phys. B 24 013101
[30] Zhang L L, Zhang J, Meng Q T and Song Y Z 2015 Phys. Scr. 90 035403
[31] Swope W C, Lee Y P and Schaefer H F 1979 J. Chern. Phys. 70 947
[32] Theodorakopoulos G, Peyerimhoff S D, and Buenker R J 1981 Chem. Phys. Lett. 81 413
[33] Hess B A, Buenker R J, Marian C M and Peyerimhoff S D 1982 Chem. Phys. 71 79
[34] McLean A D, Liu B and Chandler G S 1984 J. Chem. Phys. 80 5130
[35] Pradhan A D and Partridge H 1996 Chem. Phys. Lett. 255 163
[36] Kiljunen T, Eloranta J, Kunttu H, Khriachtchev L, Pettersson M and Räsänen M 2000 J. Chem. Phys. 112 7475
[37] Denis P A 2004 J. Phys. Chem. A 108 11092
[38] Karton A and Martin J M L 2010 J. Chem. Phys. 133 144102
[39] Wei X, Shi D H, Sun J F, Liu H and Zhu Z L 2013 Mol. Phys. 111 673
[40] Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M and others 2012 MOLPRO, version 2012.1
[41] Hill J G, Mazumder S and Peterson K A 2010 J. Chem. Phys. 132 054108
[42] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[43] Werner H J and Knowles P J 1985 Chem. Phys. Lett. 82 5053
[44] Shiozaki T, Knizia G and Werner H J 2011 J. Chem. Phys. 134 034113
[45] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[46] Peterson K A and Jr. Dunning T H 2002 J. Chem. Phys. 117 10548
[47] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[48] Hess B A 1986 Phys. Rev. A 33 3742
[49] Woon D E and Jr. Dunning T H 1993 J. Chem. Phys. 98 1358
[50] Le Roy R J 2007 LEVEL 7.5: A Computer Program for Solving the Radial SchrÖdinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics, Research Report CP-663
[51] Peterson K A, Lyons J R and Francisco J S 2006 J. Chem. Phys. 125 084314
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[3] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[4] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Xie An-Dong (谢安东), Yan Bing (闫冰), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(4): 043401.
[5] Accurate ab initio-based analytical potential energy function for S21Δg) via extrapolation to the complete basis set limit
Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田), Song Yu-Zhi (宋玉志). Chin. Phys. B, 2015, 24(1): 013101.
[6] Potential energy curves and spectroscopic properties of X2Σ+ and A2Π states of 13C14N
Liao Jian-Wen (廖建文), Yang Chuan-Lu (杨传路). Chin. Phys. B, 2014, 23(7): 073401.
[7] Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule
Wang Jie-Min (王杰敏), Liu Qiang (刘强). Chin. Phys. B, 2013, 22(9): 093102.
[8] Potential energy curve study on the 3Π electronic states of GaX (X=F, Cl, and Br) molecules
Cao Yun-Bin (曹云斌), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光). Chin. Phys. B, 2013, 22(12): 123401.
[9] Investigations of spectroscopic parameters and molecular constants for X1Σg+, w3Δu, and W1Δu electronic states of P2 molecule
Wang Jie-Min(王杰敏), Feng Heng-Qiang(冯恒强), Sun Jin-Feng(孙金锋), and Shi De-Heng(施德恒) . Chin. Phys. B, 2012, 21(2): 023102.
[10] Spectroscopic investigations on NO$^{ + }$($X^{1}\varSigma ^{ + }$, $a^{3}\varSigma ^{ + }$, $A^{1}\varPi$) ion using multi-reference configuration interaction method and correlation-consistent sextuple basis set augmented with diffuse functions #br#
Zhang Jin-Ping (张金平), Cheng Xin-Lu (程新路), Zhang Hong (张红), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2011, 20(6): 060401.
[11] MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) . Chin. Phys. B, 2011, 20(4): 043105.
[12] Accurate potential energy function and spectroscopic study of the X$^2\Sigma^+$, A$^2\Pi$ and B$^2\Sigma^+$ states of the CP radical
Liu Yu-Fang(刘玉芳) and Jia Yi(贾毅). Chin. Phys. B, 2011, 20(3): 033106.
[13] Study on spectroscopic parameters and molecular constants of HCl(X1+) molecule by using multireference configuration interaction approach
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Zhang Jin-Ping(张金平), Zhu Zun-Lüe(朱遵略), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2010, 19(5): 053401.
[14] Theoretical study on the complexes of He, Ne and Ar
Tong Xiao-Fei(童小菲), Yang Chuan-Lu(杨传路), Xiao Jing(肖静), Wang Mei-Shan(王美山), and Ma Xiao-Guang(马晓光). Chin. Phys. B, 2010, 19(12): 123102.
[15] Spectroscopic parameters and molecular constants of HI(X1Σ+), DI(X1Σ+) and TI(X1Σ+) isotope molecules
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2010, 19(12): 123501.
No Suggested Reading articles found!