|
|
Theoretical study on the complexes of He, Ne and Ar |
Tong Xiao-Fei(童小菲), Yang Chuan-Lu(杨传路)†, Xiao Jing(肖静), Wang Mei-Shan(王美山), and Ma Xiao-Guang(马晓光) |
School of Physics, Ludong University, Yantai 264025, China |
|
|
Abstract This paper investigates the effect of basis sets through the potential energy curves (PECs) of six rare gas complexes He2, Ne2, Ar2, He–Ne, He–Ar, and Ne–Ar. The coupled cluster singles and doubles method with perturbative treatment of triple excitations, doubly augmented basis sets of d-aug-cc-pVQZ, bond functions, and basis set superposition errors are employed. The diffuse function is more effective than the polarization function on describing the dissociation energy. The PECs are fitted into analytical potential energy functions (APEFs) using three expressions. It is found that all the expressions are suitable for describing the complexes of rare gases. Based on these APEFs, the spectroscopic parameters are calculated and the results are compared with the theoretical and experimental data available in the literature.
|
Received: 09 March 2010
Revised: 10 April 2010
Accepted manuscript online:
|
PACS:
|
31.15.bw
|
(Coupled-cluster theory)
|
|
31.15.xp
|
(Perturbation theory)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
31.50.Df
|
(Potential energy surfaces for excited electronic states)
|
|
33.15.Fm
|
(Bond strengths, dissociation energies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674114 and 10974078). |
Cite this article:
Tong Xiao-Fei(童小菲), Yang Chuan-Lu(杨传路), Xiao Jing(肖静), Wang Mei-Shan(王美山), and Ma Xiao-Guang(马晓光) Theoretical study on the complexes of He, Ne and Ar 2010 Chin. Phys. B 19 123102
|
[1] |
Weber T and Neusser H J 1991 J. Chem. Phys. 94 7689
|
[2] |
Leutwyler S and Bösiger 1990 J. Chem. Rev. 90 489
|
[3] |
Haley T P and Cybulski S M 2003 J. Chem. Phys. 119 5487
|
[4] |
Jahnke T, Czasch A, Schöffler M, Schössler S, Käsz M, Titze J, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Schmidt L Ph H, Weber Th, Schmidt-Böcking H, Ueda K and Dörner R 2007 Phys. Rev. Lett. 99 153401
|
[5] |
Gühr M, Bargheer M, Fushitani M, Kiljunen T and Schwentner N 2007 Phys. Chem. Chem. Phys. 9 779
|
[6] |
Ray D, Ulrich B, Bocharova I, Maharjan C, Ranitovic P, Gramkow B, Magrakvelidze M, De S, Litvinyuk I V, Le A T, Morishita T, Lin C D, Paulus G G and Cocke C L 2008 Phys. Rev. Lett. 100 143002
|
[7] |
Brahms N, Newman B, Johnson C, Greytak T, Kleppner D and Doyle J 2008 Phys. Rev. Lett. 101 103002
|
[8] |
Patterson D, Rasmussen J and Doyle J M 2009 New J. Phys. 11 055018
|
[9] |
Colbourn E A and Douglas A E 1976 J. Chem. Phys. 65 1741
|
[10] |
Tanaka Y, Walker W C and Yoshino K 1978 J. Chem. Phys. 70 380
|
[11] |
Frenkel D and McTague J P 1979 J. Chem. Phys. 70 2695
|
[12] |
Dehmer P M 1982 J. Chem. Phys. 76 1263
|
[13] |
Herman P R, LaRocque P E and Stoicheff B P 1988 J. Chem. Phys. 89 4535
|
[14] |
Keil M , Danielson L J and Dunlop J P 1991 J. Chem. Phys. 94 296
|
[15] |
Wüest A and Merkt F 2003 J. Chem. Phys. 118 8807
|
[16] |
Grabow J U, Pine A S, Fraser G T, Lovas F J, Suenram R D, Emilsson T, Arunan E and Gutowsky H S 1995 J. Chem. Phys. 102 1181
|
[17] |
Korona T, Williams H L, Bukowski R, Jeziorski B and Szalewicz K 1997 J. Chem. Phys. 106 5109
|
[18] |
Partridge H and Stallcop J R 2001 J. Chem. Phys. 115 6471
|
[19] |
Tao F M and Pan Y K 1992 J. Chem. Phys. 97 4989
|
[20] |
Fern'andez B and Koch H 1998 J. Chem. Phys. 109 10255
|
[21] |
Slav'hivcek P S 2003 J. Chem. Phys. 119 2102
|
[22] |
Hättig C, Larsen H, Olsen J, Jorgensen P, Koch H, Fern'andez B and Rizzo A 1999 J. Chem. Phys. 111 10099
|
[23] |
Cybulski S M and Toczylowski R R 1999 J. Chem. Phys. 111 10520
|
[24] |
Haley T P and Cybulski S M 2003 J. Chem. Phys. 119 5478
|
[25] |
Tang K T and Toennies J P 1984 J. Chem. Phys. 80 3726
|
[26] |
Yang D D, Li P and Tang K T 2009 J. Chem. Phys. 131 154301
|
[27] |
Aziz R A and Slaman M J 1989 Chem. Phys. 130 187
|
[28] |
Murrell J N and Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 70 1552
|
[29] |
Yang C L, Zhang X and Han K L 2004 J. Mol. Struct. (THEOCHEM) 676 209
|
[30] |
Su T, Yang C L, Wang X Q, Bai F J and Wang M S 2009 Chem. Phys. Lett. 467 265
|
[31] |
Yang C L, Zhang X and Han K L 2004 J. Mol. Struct. (THEOCHEM) 678 183
|
[32] |
Zhang L, Yang C L and Ren T Q 2008 Mol. Phys. 106 615
|
[33] |
Yang C L, Gao F, Zhang X Y and Han K L 2005 J. Chem. Phys. 123 204308
|
[34] |
Gao F, Yang C L and Ren T Q 2006 J. Mol. Struct. (THEOCHEM) 758 81
|
[35] |
Bai F J, Yang C L, Qian Q and Zhang L 2009 Chin. Phys. B 18 549
|
[36] |
Yang C L, Zhu Z H, Wang R and Liu X Y 2001 J. Mol. Struct. (THEOCHEM) 548 47
|
[37] |
Wang X Q, Yang C L, Su T and Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)
|
[38] |
Gao F, Yang C L and Zhang X Y 2007 Acta Phys. Sin. 56 2547 (in Chinese)
|
[39] |
Huxley P, Knowles P B, Murrell J N and Watts J D 1984 J. Chem. Soc. Faraday Trans. 80 1349
|
[40] |
Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, et al. MOLPRO package
|
[41] |
Dawning-4000A is a large parallel computer containing 134 CPUs (AMD Opteron 64-bit 1.8 GHZ) in Ludong University. It is based on TURBO LINUX8.0 and implements with MOLPRO 2002, Gaussian 03, MOLCAS 5.0 and so on
|
[42] |
Woon D E 1993 J. Chem. Phys. 100 2838
|
[43] |
Woon D E and Jr T H D 1994 J. Chem. Phys. 100 2975
|
[44] |
Boys S F and Bernardi F 1970 Mol. Phys. 19 553
|
[45] |
Koch H, Fern'andez B and Christiansen O 1997 J. Chem. Phys. 106 5109
|
[46] |
Thakkar J 1988 J. Chem. Phys. 89 2092
|
[47] |
Bishop D M and Pinpin 1993 Int. J. Quantum Chem. 45 349
|
[48] |
Aziz R A and Janzen A R 1995 Phys. Rev. Lett. 74 1586
|
[49] |
Tang K T and Toennies J P 1986 Z. Phys. D: At., Mol. Clusters 1 91
|
[50] |
Tang K T and Toennies J P 2003 J. Chem. Phys. 118 4976
|
[51] |
Yang C L, Huang Y J, Zhang X and Han K L 2003 J. Mol. Struct. (THEOCHEM) 625 289
|
[52] |
Janzen A R and Aziz R A 1997 J. Chem. Phys. 107 914
|
[53] |
Olgivie J F and Wang F Y H 1992 J. Mol. Struct. 273 277
|
[54] |
Olgivie J F and Wang F Y H 1993 J. Mol. Struct. 291 313
|
[55] |
Aziz R A 1993 J. Chem. Phys. 99 4518
|
[56] |
Huber K P and Herzberg G, ``Constants of Diatomic Molecules'' (data prepared by Gallagher J W and Johnson R D III) in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by Linstrom P J and Mallard W G, 2001, National Institute of Standards and Technology, Gaithersburg M D, 20899, http://webbook.nist.gov.
|
[57] |
Tanaka Y and Yoshino K 1970 J. Chem. Phys. 53 2012
|
[58] |
Tao J and Perdew J P 2005 J. Chem. Phys. 122 114102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|