|
|
Potential energy curve study on the 3Π electronic states of GaX (X=F, Cl, and Br) molecules |
Cao Yun-Bin (曹云斌), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光) |
School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China |
|
|
Abstract The potential energy curves (PECs) of the 3Π states of GaX (X=F, Cl, and Br) molecules are calculated using the multireference configuration interaction method with a large contracted basis set aug-cc-pV5Z. The PECs are accurately fitted to analytical potential energy functions (APEFs) using the Murrell–Sorbie potential function. The spectroscopic parameters for the states are determined using the obtained APEFs, and compared with the theoretical and experimental data available presently in the literature.
|
Received: 26 March 2013
Revised: 05 May 2013
Accepted manuscript online:
|
PACS:
|
34.20.Cf
|
(Interatomic potentials and forces)
|
|
31.50.Df
|
(Potential energy surfaces for excited electronic states)
|
|
33.20.-t
|
(Molecular spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174117 and 10974078) and the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province, China. |
Corresponding Authors:
Yang Chuan-Lu
E-mail: scuycl@gmail.com
|
Cite this article:
Cao Yun-Bin (曹云斌), Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Ma Xiao-Guang (马晓光) Potential energy curve study on the 3Π electronic states of GaX (X=F, Cl, and Br) molecules 2013 Chin. Phys. B 22 123401
|
[1] |
Grabandt O, Lange C A and Mooyman R 1989 Chem. Phys. Lett. 160 359
|
[2] |
Barrow R F, Dodsworth P G and Zeeman P B 1957 Proc. Phys. Soc. Lond. Sect. A 70 34
|
[3] |
Hoeft J and Nair K P R 1986 Z. Phys. D: At. Mol. Clusters 4 189
|
[4] |
Hoeft J and Nair K P R 1993 Chem. Phys. Lett. 215 371
|
[5] |
Mahieu E, Dubois I and Bredohl H 1991 J. Mol. Spectrosc. 150 477
|
[6] |
Uehara H, Horiai K and Nakagawa K 1991 Chem. Phys. Lett. 178 553
|
[7] |
Dearden D V, Johnson R D and Hudgens J W 1992 J. Chem. Phys. 97 8880
|
[8] |
Venkatasubramanian R, Saksena M D and Singh M 1993 Chem. Phys. Lett. 210 367
|
[9] |
Sunanda K, Saksena M D and Lakshminarayana G 1994 J. Mol. Spectrosc. 168 158
|
[10] |
Saksena M D, Venkatasubramanian R and Singh M 1997 Can. J. Phys. 75 191
|
[11] |
Kim G and Balasubramanian K 1992 Chem. Phys. Lett. 193 109
|
[12] |
Kim G and Balasubramanian K 1992 J. Mol. Spectrosc. 152 192
|
[13] |
Mochizuki Y and Tanaka K 1998 Theor. Chem. Acc. 101 257
|
[14] |
Barschlicher C W 1999 Theor. Chem. Acc. 101 421
|
[15] |
Yang X Z, Lin M R, Zou W X and Zhang B Z 2002 Chem. Phys. Lett. 362 190
|
[16] |
Yang X Z, Lin M R, Zou W X and Zhang B Z 2004 J. Mol. Struct. THEOCHEM 668 209
|
[17] |
Singh V B 2005 J. Phys. Chem. Ref. Data 34 23
|
[18] |
Saksena M D, Deob M N, Sunandaa K and Khana H A 2006 J. Mol. Spectrosc. 235 166
|
[19] |
Gao F, Yang C L, Hu Z Y and Wang M S 2007 Chin. Phys. 16 3668
|
[20] |
Bai F J, Yang C L, Qian Q and Zhang L 2009 Chin. Phys. B 18 549
|
[21] |
Wang J M and Sun J F 2011 Acta Phys. Sin. 60 123103 (in Chinese)
|
[22] |
Wang J M, Sun J F and Shi D H 2010 Chin. Phys. B 19 113601
|
[23] |
Tong X F, Yang C L, Xiao J, Wang M S and Ma X G 2010 Chin. Phys. B 19 123102
|
[24] |
Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
|
[25] |
Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
|
[26] |
MOLPRO, version 2010.1, a package of ab initio programs by Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklaß A, O’Neill D P, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A J, Tarroni R, Thorsteinsson T and Wang M, see http://www.molpro.net
|
[27] |
Huber K P and Herzberg G 1979 Spectroscopic Constants of Diatomic Molecules Vol. 4 (New York: Van Nostrand Reinhold) p. 716
|
[28] |
Savithry T, Rao D V K, Murty A A N and Rao P T 1974 Physica 75 386
|
[29] |
Venkatasubramanian R, Saksena M D and Singh M 1994 J. Mol. Spectrosc. 168 290
|
[30] |
Borkowska-Burnecka J and Zyrnicki W 1994 Bull. Pol. Acad. Sci. 42 63
|
[31] |
Yang X Z, Lin M R, Zou W X and Zhang B Z 2004 J. Phys. Chem. A 108 4341
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|