|
|
Spectroscopic investigations on NO$^{ + }$($X^{1}\varSigma ^{ + }$, $a^{3}\varSigma ^{ + }$, $A^{1}\varPi$) ion using multi-reference configuration interaction method and correlation-consistent sextuple basis set augmented with diffuse functions #br# |
Zhang Jin-Ping (张金平)a, Cheng Xin-Lu (程新路)a, Zhang Hong (张红)b, Yang Xiang-Dong (杨向东)a |
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b School of Physical Science and Technology, Sichuan University, Chengdu 610065, China |
|
|
Abstract Three low-lying electronic states ($X^{1}\varSigma ^{ + }$, $a^{3}\varSigma ^{ + }$, and $A^{1}\varPi$) of NO$^{ + }$ ion are studied using the complete active space self-consistent-field (CASSCF) method followed by highly accurate valence internally contracted multi-reference configuration interaction (MRCI) approach in combination of the correlation-consistent sextuple basis set augmented with diffuse functions, aug-cc-pV6Z. The potential energy curves (PECs) of the NO$^{ + }$($X^{1}\varSigma ^{ + }$, $a^{3}\varSigma ^{ + }$, $A^{1}\varPi$) are calculated. Based on the PECs, the spectroscopic parameters $R_{\rm e}$, $D_{\rm e}$, $\omega _{\rm e}$, $\omega _{\rm e}\chi _{\rm e}$, $\alpha _{\rm e}$, $B_{\rm e}$, and $D_{0}$ are reproduced, which are in excellent agreement with the available measurements. By numerically solving the radial Schr\"{o}dinger equation of nuclear motion using the Numerov method, the first 20 vibrational levels, inertial rotation and centrifugal distortion constants of NO$^{ + }$($X^{1}\varSigma ^{ + }$, $a^{3}\varSigma ^{ + }$, $A^{1}\varPi$) ion are derived when the rotational quantum number $J$ is equal to zero ($J = 0$) for the first time, which accord well with the available measurements. Finally, the analytical potential energy functions of these states are fitted, which are used to accurately derive the first 20 classical turning points when $J = 0$. These results are compared in detail with those of previous investigations reported in the literature.
|
Received: 04 September 2010
Revised: 02 December 2010
Accepted manuscript online:
|
PACS:
|
04.25.-g
|
(Approximation methods; equations of motion)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10976019 and 10974139). |
Cite this article:
Zhang Jin-Ping (张金平), Cheng Xin-Lu (程新路), Zhang Hong (张红), Yang Xiang-Dong (杨向东) Spectroscopic investigations on NO$^{ + }$($X^{1}\varSigma ^{ + }$, $a^{3}\varSigma ^{ + }$, $A^{1}\varPi$) ion using multi-reference configuration interaction method and correlation-consistent sextuple basis set augmented with diffuse functions #br# 2011 Chin. Phys. B 20 060401
|
[1] |
Albritton D L, Schmeltekopf A L and Zare R N 1979 J. Chem. Phys. 71 3271 and the references herein
|
[2] |
Oppenheimer M, Dalgarno A, Trebino F P, Brace L H, Brinton H C and Hoffman J H 1977 J. Geophys. Res. 82 191
|
[3] |
Torr D G and Torr M R 1979 J. Atmos. Terr. Phys. 41 797
|
[4] |
Ferguson E E, ed. Ausloo P 1979 in Kinetics of Ion-Molecule Reactions (New York: Plenum) p. 377
|
[5] |
Natalis P, Delwiche J, Collin J E, Caprace G and Praet M T 1977 Chem. Phys. Lett. 49 177
|
[6] |
Samson J A R 1968 Phys. Lett. A 28 391
|
[7] |
Edqvist O, Lindholm E, Selin L E, Sjögren H and AAsbrink L 1970 Ark. Fys. 40 439
|
[8] |
Edqvist O, AAsbrink L and Lindholm E 1971 Z. Naturforsch. Teil. A 26 1407
|
[9] |
Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. IV Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company)
|
[10] |
Cosby P C and Helm H 1981 J. Chem. Phys. 75 3882
|
[11] |
Southworth S H, Parr A C, Hardis J E and Dehmer J L 1987 J. Chem. Phys. 87 5125
|
[12] |
Park H and Zare R N 1993 J. Chem. Phys. 99 6537
|
[13] |
Reddy R R, Ahammed Y N, Basha D B, Narasimhulu K, Reddy L S S and Gopal K R 2006 J. Quantum Spectrosc. & Radiat. Transfer 97 344
|
[14] |
Erman P, Karawajczyk A, Rachlew-Källne E and Strömholm C 1995 J. Chem. Phys. 102 3064
|
[15] |
Jarvis G K, Song Y and Ng C Y 1999 J. Chem. Phys. 111 1937
|
[16] |
Jarvis G K, Evans M, Ng C Y and Mitsuke K 1999 J. Chem. Phys. 111 3058
|
[17] |
Partridge H, Langhoff S R and Bauschlicher C W 1990 J. Chem. Phys. 93 7179
|
[18] |
Chambaud G and Rosmus P 1990 Chem. Phys. Lett. 165 429
|
[19] |
Wulfov A L 1996 Chem. Phys. Lett. 263 79
|
[20] |
Werner H J and Rosmus P 1982 J. Mol. Spectrosc. 96 362
|
[21] |
Peterson K A and Woods R C 1987 J. Chem. Phys. 87 4409
|
[22] |
Scuseria G E, Hamilton T P and Schaefer III H F 1990 J. Chem. Phys. 92 568
|
[23] |
Partridge H, Langhoff S R and Bauschlicher C W 1990 Chem. Phys. Lett. 170 13
|
[24] |
Manaa M R and Yarkony D R 1991 J. Chem. Phys. 95 6562
|
[25] |
Fehér M and Martin P A 1993 Chem. Phys. Lett. 215 565
|
[26] |
Palmieri P, Tarroni R, Chambaud G and Rosmus P 1993 J. Chem. Phys. 99 456
|
[27] |
Hutter S J, Hess B A, Marian C M and Samzow R 1994 J. Chem. Phys. 100 5617
|
[28] |
Polák R and Fivser J 2004 Chem. Phys. 303 73
|
[29] |
Ehresmann A, Kielich W, Werner L, Demekhin Ph V, Omel'yanenko D V, Sukhorukov V L, Schartner K H and Schmoranzer H 2007 Eur. Phys. J. D 45 235
|
[30] |
Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
|
[31] |
Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
|
[32] |
Peterson K A, Woon D E and Dunning T H 1994 J. Chem. Phys. 100 7410
|
[33] |
Peterson K A, Kendall R A and Dunning T H 1993 J. Chem. Phys. 99 1930
|
[34] |
Dunning T H 1989 J. Chem. Phys. 90 1007
|
[35] |
Quiroz González J L M and Thompson D 1997 Comput. Phys. 11 514
|
[36] |
Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
|
[37] |
Fermann J T and Sherrill C D 1996 Some Comments on Multi-Reference CI (MRCI)
|
[38] |
Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio programs
|
[39] |
Karlström G, Lindh R, Malmqvist P AA, Roos B O, Ryde U, Veryazov V, Widmark P O, Cossi M, Schimmelpfennig B, Neogrady P and Seijo L 2003 Comp. Mater. Sci. 28 222
|
[40] |
Shi D H, Zhang J P, Sun J F, Zhu Z L, Yu B H and Liu Y F 2008 J. Mol. Struct. (Theochem) 851 30
|
[41] |
Shi D H, Zhang J P, Liu Y F, Sun J F and Zhu Z L 2009 Int. J. Quantum Chem. 109 1159
|
[42] |
Shi D H, Zhang J P, Sun J F, Liu Y F, Zhu Z L, Ma H and Yang X D 2008 Chin. Phys. B 17 3678
|
[43] |
Murrell J N, Carter S, Farantos S C, Huxley P and Varandas A J C 1984 Molecular Potential Energy Functions (Chichester: John Wiley & Sons) p. 9
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|