|
|
Spectroscopic parameters and molecular constants of HI(X1Σ+), DI(X1Σ+) and TI(X1Σ+) isotope molecules |
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒)†, Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋) |
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract The potential energy curve (PEC) of HI(X1Σ+) molecule is studied using the complete active space self-consistent field method followed by the highly accurate valence internally contracted multireference configuration interaction approach at the correlation-consistent basis sets, aug-cc-pV6Z for H and aug-cc-pV5Z-pp for I atom. Using the PEC of HI(X1Σ+), the spectroscopic parameters of three isotopes, HI(X1Σ+), DI(X1Σ+) and TI(X1Σ+), are determined in the present work. For the HI(X1Σ+), the values of D0, De, Re, ωe, ωeχe, αe and Be are 3.1551 eV, 3.2958 eV, 0.16183 nm, 2290.60 cm-1, 40.0703 cm-1, 0.1699 cm-1 and 6.4373 cm-1, respectively; for the DI (X1Σ+), the values of D0, De, Re, ωe, ωeχe, αe and Be are 3.1965 eV, 3.2967 eV, 0.16183 nm, 1626.8 cm-1, 20.8581 cm-1, 0.0611 cm-1 and 3.2468 cm-1, respectively; for the TI (X1Σ+), the values of D0, De, Re, ωe, ωeχe, αe and Be are of 3.2144 eV, 3.2967 eV, 0.16183 nm, 1334.43 cm-1, 14.0765 cm-1, 0.0338 cm-1 and 2.1850 cm-1, respectively. These results accord well with the available experimental results. With the PEC of HI(X1Σ+) molecule obtained at present, a total of 19 vibrational states are predicted for the HI, 26 for the DI, and 32 for the TI, when the rotational quantum number J is equal to zero (J = 0). For each vibrational state, vibrational level G(ν), inertial rotation constant Bν and centrifugal distortion constant Dν are determined when J = 0 for the first time, which are in excellent agreement with the experimental results.
|
Received: 04 May 2010
Revised: 19 June 2010
Accepted manuscript online:
|
PACS:
|
31.15.V-
|
(Electron correlation calculations for atoms, ions and molecules)
|
|
31.30.Gs
|
(Hyperfine interactions and isotope effects)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
33.20.Sn
|
(Rotational analysis)
|
|
33.20.Tp
|
(Vibrational analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874064), and the Program for Science and Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008). |
Cite this article:
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋) Spectroscopic parameters and molecular constants of HI(X1Σ+), DI(X1Σ+) and TI(X1Σ+) isotope molecules 2010 Chin. Phys. B 19 123501
|
[1] |
Wright S A and McDonald J D 1994 J. Chem. Phys. 101 238
|
[2] |
Meuciarová K, Cantrel L and uCrnuvsk I 2008 it Collect. Czech. Chem. Commun. 73 1340
|
[3] |
Naudé S M and Verleger H 1950 Proc. Phys. it Soc. 63 470
|
[4] |
Niay P, Bernage P, Coquant C and Fayt A 1978 J. Mol. Spectrosc. 72 168
|
[5] |
Lucia D F C, Helminger P and Gordy W 1971 Phys. Rev. A 3 1849
|
[6] |
Hurlock S C, Alexander R M, Rao K N, Derska S N, Pugh L A and R K Narahari 1971 J. Mol. Spectrosc. 37 373
|
[7] |
Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. 4 Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p. 325
|
[8] |
Wilkinson P G 1963 Astrophys. J. 138 778
|
[9] |
Coxon J A and Hajigeorgiou P G 1991 J. Mol. it Spectrosc. 150 1
|
[10] |
Ungemach S R, Schaefer H F and Liu B 1977 J. Mol. it Spectrosc. 66 99
|
[11] |
Barandiarán Z and Seijo L 1986 J. Chem. Phys. 84 1941
|
[12] |
Matsuoka O 1992 J. Chem. Phys. 97 2271
|
[13] |
Seijo L 1995 J. Chem. Phys. 102 8078
|
[14] |
Lee S Y and Lee Y S 1991 Chem. Phys. Lett. 187 302
|
[15] |
Styszy'nski J 2000 Chem. Phys. Lett. 317 351
|
[16] |
Styszy'nski J and Kobus J 2003 Chem. Phys. it Lett. 369 441
|
[17] |
Haiduke R L A, Comar M and da Silva A B F 2006 Chem. Phys. 331 173
|
[18] |
Visscher L, Styszy nski J and Nieuwpoort W C 1996 J. it Chem. Phys. 105 1987
|
[19] |
Al-Saidi W A 2008 J. Chem. Phys. 129 064316
|
[20] |
Chapman D A, Balasubramanian K and Lin S H 1987 J. it Chem. Phys. 87 5325
|
[21] |
Kellö V and Sadlej A J 1990 J. Chem. Phys. 93 8122
|
[22] |
Saue T, Faegri K and Gropen O 1996 Chem. Phys. it Lett. 263 360
|
[23] |
Feller D, Peterson K A, de Jong W A and Dixon D A 2003 J. Chem. Phys. 118 3510
|
[24] |
Alekseyev A B, Liebermann H, Kokh D B and Buenker R J 2000 J. Chem. Phys. 113 6174
|
[25] |
Martin J M L and Sundermann A 2001 J. Chem. Phys. 114 3408
|
[26] |
Hirata S, Yanai T, Harrison R J, Kamiya M and Fan P D 2007 J. Chem. Phys. 126 024104
|
[27] |
Dunning T H 1984 J. Phys. Chem. 88 2469
|
[28] |
Schwerdtfeger P, Szentp'aly L V, Vogel K, Silberbach H, Stoll H and Preuss H 1986 J. Chem. Phys. 84 1606
|
[29] |
Schwerdtfeger P, Szentp'aly L V, Stoll H and Preuss H 1987 J. Chem. Phys. 87 510
|
[30] |
Werner H J, Reinsch E A and Rosmus P 1981 Chem. it Phys. Lett. 78 311
|
[31] |
Watanabe Y and Matsuoka O 1998 J. Chem. Phys. 109 8182
|
[32] |
Hennum A C, Halkier A and Klopper W 2001 J. Mol. it Struct. 599 153
|
[33] |
Peterson K A, Figgen D, Goll E, Stoll H and Dolg M 2003 J. Chem. Phys. 119 11113
|
[34] |
Hirata S, Yanai T, de Jong W A, Nakajima T and Hirao K 2004 J. Chem. Phys. 120 3297
|
[35] |
Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
|
[36] |
Knowles P J and Werner H J 1988 Chem. Phys. it Lett. 145 514
|
[37] |
Peterson K A, Woon D E and Dunning T H 1994 J. Chem. Phys. 100 7410
|
[38] |
Peterson K A, Kendall R A and Dunning T H 1993 J. Chem. Phys. 99 1930
|
[39] |
Dunning T H 1989 J. Chem. Phys. 90 1007
|
[40] |
Krogh J W, Lindh R, Malmqvist P AA, Roos B O, Veryazov V and Widmark P O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)
|
[41] |
Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio program
|
[42] |
Shi D H, Zhang J P, Sun J F, Liu Y F and Zhu Z L 2009 it Acta Phys. Sin. 58 5329 (in Chinese)
|
[43] |
Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 Chin. it Phys. B 19 013501
|
[44] |
Gao F, Yang C L, Hu Z Y and Wang M S 2007 Chin. it Phys. 16 3668
|
[45] |
Zhang L, Yang C L and Ren T Q 2008 Mol. Phys. 106 615
|
[46] |
Wang X Q, Yang C L, Su T and Wang M S 2009 Acta it Phys. Sin. 58 6873 (in Chinese)
|
[47] |
Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 it Chin. Phys. B 19 053401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|