ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Giant transmission Goos–Hänchen shift in surface plasmon polaritons excitation and its physical origin |
Yang Yang (杨阳), Liu Ju (刘菊), Li Zhi-Yuan (李志远) |
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Excitation of surface plasmon polaritons (SPPs) propagating at the interface between a dielectric medium and a silver thin film by a focused Gaussian beam in a classical Kretschmann prism setup is studied theoretically. We find that the center of the transmitted Gaussian evanescent wave has a giant lateral shift relative to the incident Gaussian beam center for a wide range of incident angle and Gaussian beam wavelength to excite SPPs, which can be more than two orders of magnitude larger than the silver film thickness. The phenomenon is closely related with the conventional Goos–Hänchen effect for total internal reflection of light beam, and it is called the transmission Goos–Hänchen shift. We find that this lateral shift depends heavily on the excitation wavelength, incident angle, and the silver layer thickness. Finite-difference time-domain simulations show that this transmission Goos–Hänchen shift is induced by a unique dynamical process of excitation, transport, and leakage of SPPs.
|
Received: 09 November 2014
Revised: 19 January 2015
Accepted manuscript online:
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.15.Eq
|
(Optical system design)
|
|
42.25.Dd
|
(Wave propagation in random media)
|
|
52.35.Hr
|
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632704) and the National Natural Science Foundation of China (Grant No. 11374357). |
Corresponding Authors:
Li Zhi-Yuan
E-mail: lizy@aphy.iphy.ac.cn
|
Cite this article:
Yang Yang (杨阳), Liu Ju (刘菊), Li Zhi-Yuan (李志远) Giant transmission Goos–Hänchen shift in surface plasmon polaritons excitation and its physical origin 2015 Chin. Phys. B 24 074201
|
[1] |
Raether H 1988 Surface-Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag)
|
[2] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[3] |
Stockman M I 2011 Opt. Express 19 22029
|
[4] |
Li J F and Li Z Y 2014 Chin. Phys. B 23 047305
|
[5] |
Bozhevolnyi I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
|
[6] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
|
[7] |
Li Z Y and Xia Y N 2010 Nano Lett. 10 243
|
[8] |
Ding K and Ning C Z 2012 Light: Sci. Appl. 1 e20
|
[9] |
Liu S Y, Huang L, Li J F, Wang C, Meng Z M, Shi Z and Li Z Y 2013 J. Phys. Chem. C 117 10636
|
[10] |
McLellan J M, Li Z Y, Siekkinen A and Xia Y N 2007 Nano Lett. 7 1013
|
[11] |
Fang J X, Du S Y, Lebedkin S, Li Z Y, Kruk R, Schramm F and Hahn H 2010 Nano Lett. 10 5006
|
[12] |
Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L and Hou J G 2013 Nature 498 82
|
[13] |
Wang B L, Wang R, Liu R J, Lu X H, Zhao J M and Li Z Y 2013 Sci. Rep. 3 2358
|
[14] |
Zhou F, Liu Y, Li Z Y and Xia Y N 2010 Opt. Express 18 13337
|
[15] |
Atwater H A and Polman A 2010 Nat. Mater. 9 205
|
[16] |
Zijlstra P, Chon J W M and Gu M 2009 Nature 459 410
|
[17] |
Zhong X L and Li Z Y 2012 J. Phys. Chem. C 116 21547
|
[18] |
Huang X H, Neretina S and El-Sayed M A 2009 Adv. Mater. 21 4880
|
[19] |
Chen J Y, Wang D L, Xi J F, Au L, Siekkinen A, Warsen A, Li Z Y, Zhang H, Xia Y N and Li X D 2007 Nano Lett. 7 1318
|
[20] |
Hu M, Chen J Y, Li Z Y, Au L, Hartland G V, Li X D, Marquez M and Xia Y N 2006 Chem. Soc. Rev. 35 1084
|
[21] |
Palik E D 1985 Handbook of Optical Constants of Solids (Orlando, FL: Academic)
|
[22] |
Goos F and Hänchen H 1947 Ann. Phys. 1 333
|
[23] |
Artmann K 1948 Ann. Phys. 2 87
|
[24] |
Qamar Z S and Zubairy M S 2010 Phys. Rev. A 81 023821
|
[25] |
Liu X B, Cao Z Q, Zhu P F, Shen Q S and Liu X M 2006 Phys. Rev. E 73 056617
|
[26] |
Wang L G, Ikram M and Zubairy M S 2008 Phys. Rev. A 77 023811
|
[27] |
Yin X, Hesselink L, Liu Z, Fang N and Zhang X 2004 Appl. Phys. Lett. 85 372
|
[28] |
Luo C Y, Guo J, Wang Q K, Xiang Y J and Wen S C 2013 Opt. Express 21 10430
|
[29] |
Bretenaker F, Floch A L and Dutriaux L 1992 Phys. Rev. Lett. 68 931
|
[30] |
Shadrivov I V, Zharov A A and Kivshar Y S 2003 Appl. Phys. Lett. 83 2713
|
[31] |
Shadrivov I V, Ziolkowski R W, Zharov A A and Kivshar Y S 2005 Opt. Express 13 481
|
[32] |
Felbacq D, Moreau A and Smaâli R 2003 Opt. Lett. 28 1633
|
[33] |
Lai H M and Chan S W 2002 Opt. Lett. 27 680
|
[34] |
Wang L G, Chen H and Zhu S Y 2005 Opt. Lett. 30 2936
|
[35] |
Chuang S L 1986 J. Opt. Soc. Am. A 3 593
|
[36] |
Li C F 2007 Phys. Rev. A 76 013811
|
[37] |
Götte J B, Shinohara S and Hentschel M 2013 J. Opt. 15 014009
|
[38] |
Labekea D V, Baidaa F I and Vigoureuxb J M 1998 Ultramicroscopy 71 351
|
[39] |
Li J F, Guo H L and Li Z Y 2013 Photonics Research 1 28
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|