Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070503    DOI: 10.1088/1674-1056/24/7/070503
GENERAL Prev   Next  

Compression and stretching of ring-vortex solitons in a bulk nonlinear medium

Lai Xian-Jing (来娴静)a b, Cai Xiao-Ou (蔡晓鸥)b, Zhang Jie-Fang (张解放)a c
a School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
b Department of Basic Science, Zhejiang Shuren University, Hangzhou 310015, China;
c Zhejiang University of Media and Communications, Hangzhou 310018, China
Abstract  

Compression and stretching of ring-vortex solitons, which is a novel self-similar solution of (2+1)-dimensional diffraction decreasing waveguide, is investigated analytically and numerically. We obtain the ring-vortex solitons via the similarity transformation method. The distance modulation for the width, the diffraction, and the nonlinear response, strongly affects the form and the behavior of the self-similar vortex, and facilitates the efficient compression of optical waves. This approximate ring-vortex solitons can reflect the real properties of self-similar optical vortex beams during propagation under certain parameter window selection. Specific examples and figures are given to illustrate discussed features. The results obtained in this paper may have potential values for all-optical data-processing schemes and the design of beam compressors and amplifiers.

Keywords:  graded-index waveguides      ring-vortex soliton      inhomogeneous  
Received:  13 January 2015      Revised:  28 January 2015      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Corresponding Authors:  Lai Xian-Jing     E-mail:  laixianjing@163.com

Cite this article: 

Lai Xian-Jing (来娴静), Cai Xiao-Ou (蔡晓鸥), Zhang Jie-Fang (张解放) Compression and stretching of ring-vortex solitons in a bulk nonlinear medium 2015 Chin. Phys. B 24 070503

[1] Dai C Q and Chen W L 2013 Chin. Phys. B 22 010507
[2] Jia R X, Yan H L, Liu W J and Lei M 2014 Chin. Phys. B 23 100502
[3] Wu L, Li L, Zhang J F, Mihalache D, Malomed B A and Liu W M 2010 Phys. Rev. A 81 061805(R)
[4] Wang X and Chen Y 2014 Chin. Phys. B 23 070203
[5] Kruglov V I, Peacock A C and Harvey J D 2003 Phys. Rev. Lett. 90 113902
[6] Zhu H P 2014 Nonlinear Dyn. 76 1651
[7] Ponomarenko S A and Agrawal G P 2007 Opt. Lett. 32 1659
[8] Dai C Q and Zhu H P 2014 Ann. Phys. 341 142
[9] Belmonte-Beitia J, Pérez-García V M, Vekslerchik V and Torres P J 2007 Phys. Rev. Lett. 98 064102
[10] Dai C Q, Wang X G and Zhou G Q 2014 Phys. Rev. A 89 013834
[11] Zhu H P 2013 Nonlinear Dyn. 72 873
[12] Cheng X P, Tang X Y and Lou S Y 2014 Chin. Phys. Lett. 31 070201
[13] Wu L, Li L and Zhang J F 2008 Phys. Rev. A 78 013838
[14] Law K J H, Kevrekidis P G and Tuckerman Laurette S 2010 Phys. Rev. Lett. 105 160405
[15] Tian Q, Wu L, Zhang Y H and Zhang J F 2012 Phys. Rev. E 85 056603
[16] Song X, and Li H M 2013 Commun. Theor. Phys. 59 290
[17] Yaroslav V K, Victor A V and Lluis T 2005 Phys. Rev. Lett. 94 043902
[18] Towers I, Buryak A V, Sammut R A, Malomed B A, Crasovan L C and Mihalache D 2001 Phys. Lett. A 288 292
[19] Neshev D N, Alexander T J, Ostrovskaya E A, Kivshar Y S, Martin H, Makasyuk I and Chen Z 2004 Phys. Rev. Lett. 92 123903
[20] Fleischer J W, Bartal G, Cohen O, Manela O, Segev M, Hudock J and Christodoulides D N 2004 Phys. Rev. Lett. 92 123904
[21] Kartashov Y V, Ferrando A, Egorov A A and Torner L 2005 Phys. Rev. Lett. 95 123902
[22] Yakimenko A I, Zaliznyak Y A and Kivshar Y S 2005 Phys. Rev. E 71 065603(R)
[23] Malomed B A and Stepanyants Y A 2010 Chaos 20 013130
[24] Borovkova O V, Kartashov Y V, Torner L and Malomed B A 2011 Phys. Rev. E 84 035602(R)
[25] Dai C Q and Zhang J F 2010 Opt. Lett. 35 2651
[26] Dai C Q, Zhu S Q, Wang L L and Zhang J F 2010 EPL 92 24005
[27] Caplan R M, Hoq Q E, Carretero-Gonzàlez R and Kevrekidis P G 2009 Opt. Commun. 282 1399
[28] Chen S H, Yang Y H, Yi L, Lu P X and Guo D S 2007 Phys. Rev. E 75 036617
[29] Ponomarenko S A and Agrawal G P 2006 Phys. Rev. Lett. 97 013901
[1] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[2] Sound propagation in inhomogeneous waveguides with sound-speed profiles using the multimodal admittance method
Qi Li(李琪), Juan Liu(刘娟), Wei Guo(郭威). Chin. Phys. B, 2020, 29(1): 014303.
[3] Atomic even-harmonic generation due to symmetry-breaking effects induced by spatially inhomogeneous field
Yue Guo(郭月), Aihua Liu(刘爱华), Jun Wang(王俊), Xueshen Liu(刘学深). Chin. Phys. B, 2019, 28(9): 094212.
[4] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[5] Effect of multiple rescattering processes on harmonic emission in spatially inhomogeneous field
Cai-Ping Zhang(张彩萍), Chang-Long Xia(夏昌龙), Xiang-Fu Jia(贾祥富), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2018, 27(3): 034206.
[6] Carrier-envelope phase measurement using plasmonic-field-enhanced high-order harmonic generation of H atom in few-cycle laser pulses
Wei Li(李伟), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2016, 25(5): 053203.
[7] Dynamics of laser beams in inhomogeneous electron—positron—ion plasmas
Cheng Li-Hong (成丽红), Tang Rong-An (唐荣安), Du Hong-E (杜宏娥), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2015, 24(7): 075201.
[8] Selection of quantum path in high-order harmonics and isolated sub-100 attosecond generation in few-cycle spatially inhomogeneous laser fields
Ge Xin-Lei (葛鑫磊), Du Hui (杜慧), Wang Qun (王群), Guo Jing (郭静), Liu Xue-Shen (刘学深). Chin. Phys. B, 2015, 24(2): 023201.
[9] Fast high-resolution nuclear magnetic resonance spectroscopy through indirect zero-quantum coherence detection in inhomogeneous fields
Ke Han-Ping (柯汉平), Chen Hao (陈浩), Lin Yan-Qin (林雁勤), Wei Zhi-Liang (韦芝良), Cai Shu-Hui (蔡淑惠), Zhang Zhi-Yong (张志勇), Chen Zhong (陈忠). Chin. Phys. B, 2014, 23(6): 063201.
[10] Manipulating electromagnetic waves with metamaterials:Concept and microwave realizations
He Qiong (何琼), Sun Shu-Lin (孙树林), Xiao Shi-Yi (肖诗逸), Li Xin (李欣), Song Zheng-Yong (宋争勇), Sun Wu-Jiong (孙午炯), Zhou Lei (周磊). Chin. Phys. B, 2014, 23(4): 047808.
[11] Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation
Tao Yong-Sheng (陶勇胜), He Jing-Song (贺劲松), K. Porsezian. Chin. Phys. B, 2013, 22(7): 074210.
[12] Resistance switching in oxides with inhomogeneous conductivity
Shang Da-Shang (尚大山), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根), Wuttig Matthias. Chin. Phys. B, 2013, 22(6): 067202.
[13] Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Zhang Jie-Fang (张解放), Jin Mei-Zhen (金美贞), He Ji-Da (何纪达), Lou Ji-Hui (楼吉辉), Dai Chao-Qing (戴朝卿). Chin. Phys. B, 2013, 22(5): 054208.
[14] A new model analysis of the third harmonic voltage in inductive measurement for critical current density of superconducting films
Zhang Xu(张旭),Wu Zhi-Zhen(吴之珍),Zhou Tie-Ge(周铁戈), He Ming(何明), Zhao Xin-Jie(赵新杰),Yan Shao-Lin(阎少林),and Fang Lan(方兰). Chin. Phys. B, 2011, 20(2): 027401.
[15] A novel planar vertical double-diffused metal-oxide- semiconductor field-effect transistor with inhomogeneous floating islands
Ren Min(任敏), Li Ze-Hong(李泽宏), Liu Xiao-Long(刘小龙), Xie Jia-Xiong(谢加雄), Deng Guang-Min(邓光敏), and Zhang Bo(张波) . Chin. Phys. B, 2011, 20(12): 128501.
No Suggested Reading articles found!