Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070504    DOI: 10.1088/1674-1056/24/7/070504
GENERAL Prev   Next  

Effects of evacuation assistant's leading behavior on the evacuation efficiency: Information transmission approach

Wang Xiao-Lu (王晓璐)a, Guo Wei (郭玮)a, Zheng Xiao-Ping (郑小平)b
a College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China;
b Department of Automation, Tsinghua University, Beijing 100084, China
Abstract  

Evacuation assistants are expected to spread the escape route information and lead evacuees toward the exit as quickly as possible. Their leading behavior influences the evacuees' movement directly, which is confirmed to be a decisive factor of the evacuation efficiency. The transmission process of escape information and its function on the evacuees' movement are accurately presented by the proposed extended dynamic communication field model. For evacuation assistants and evacuees, their sensitivity parameter of static floor field (SFF), kSL, and kSe, are fully discussed. The simulation results indicate that the appropriate kSL is associated with the maximum kSe of evacuees. The optimal combinations of kSL and kSe were found to reach the highest evacuation efficiency. There also exists an optimal value for evacuation assistants' information transmission radius.

Keywords:  information transmission      leading behavior      evacuation efficiency      cellular automata  
Received:  23 December 2014      Revised:  11 April 2015      Accepted manuscript online: 
PACS:  05.65.+b (Self-organized systems)  
  05.50.+q (Lattice theory and statistics)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB706900), the National Natural Science Foundation of China (Grant Nos. 71225007 and 71203006), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAK13B06), the Humanities and Social Sciences Project of the Ministry of Education of China (Grant Nos. 10YJA630221 and 12YJCZH023), and the Beijing Philosophy and Social Sciences Planning Project of the Twelfth Five-Year Plan, China (Grant Nos. 12JGC090 and 12JGC098).

Corresponding Authors:  Zheng Xiao-Ping     E-mail:  asean@mail.tsinghua.edu.cn

Cite this article: 

Wang Xiao-Lu (王晓璐), Guo Wei (郭玮), Zheng Xiao-Ping (郑小平) Effects of evacuation assistant's leading behavior on the evacuation efficiency: Information transmission approach 2015 Chin. Phys. B 24 070504

[1] Wang X L, Guo W, Cheng Y and Zheng X P 2015 Safety Sci. 74 150
[2] Couzin I D, Krause J, Franks N R and Levin S A 2005 Nature 433 513
[3] Sumpter D, Buhl J, Biro D and Couzin I 2008 Theor. Biosci. 127 177
[4] Fang T Y, Li J, Zhu K J, Liu S B and Yang L Z 2009 Int. J. Mod. Phys. C 20 1583
[5] Zhu K J, Liu S B, Rao P and Yang L Z 2012 Int. J. Mod. Phys. C 23 1250049
[6] Faria J, Dyer J R G, Tosh C R and Krause J 2010 Anim. Behav. 79 895
[7] Aubé F and Shield R 2004 6th International Conference on Cellular Automata for Research and Industry, October 25-27, 2004 Amsterdam, Holland, p. 601
[8] Pelechano N and Badler N I 2006 IEEE Comput. Graph. 26 80
[9] Yuan W F and Tan K H 2009 Curr. Appl. Phys. 9 1014
[10] Henein C M and White T 2010 Physica A 389 4636
[11] Wang X L, Zheng X P and Cheng Y 2012 Physica A 391 2245
[12] Hou L, Liu J G, Pan X and Wang B H 2014 Physica A 400 93
[13] Wang H N, Chen D, Pan W, Xue Y and He H D 2014 Chin. Phys. B 23 080505
[14] Yue H, Zhang B Y, Shao C F and Xing Y 2014 Chin. Phys. B 23 050512
[15] Lu L, Ren G, Wang W and Wang Y 2014 Chin. Phys. B 23 088901
[16] Zhu N, Jia B, Shao C F and Yue H 2012 Chin. Phys. B 21 050501
[17] Xu Y, Huang H J and Yong G 2012 Chin. Phys. Lett. 29 080502
[18] Kirchner A, Klupfel H, Nishinari K, Schadschneider A and Schreckenberg M 2003 Physica A 324 689
[19] Kirchner A, Klupfel H, Nishinari K, Schadschneider A and Schreckenberg M 2004 J. Stat. Mech. P10011
[20] Schadschneider A, Kirchner A and Nishinari K 2003 Appl. Bionics. Biomech. 1 11
[21] Peng Y C and Chou C I 2011 Comput. Phys. Commun. 182 205
[22] Wang X L, Guo W, Cheng Y and Zheng X P 2015 Safety Sci. 74 150
[23] Varas A, Cornejo M D, Mainemer D, Toledo B, Rogan J, Muñoz V and Valdivia J A 2007 Physica A 382 631
[24] Alizadeh R 2011 Safety Sci. 49 315
[25] Leng B, Wang J Y, Zhao W Y and Xiong Z 2014 Physica A 402 119
[26] Guo R Y 2014 Physica A 400 1
[27] Chen M, Han D F and Zhang H P 2011 J. Mar. Sci. Appl. 10 340
[28] Yuan W F and Tan K H 2007 Physica A 379 250
[29] Kirchner A and Schadschneider A 2002 Physica A 312 260
[1] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[2] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[3] Effects of rainy weather on traffic accidents of a freeway using cellular automata model
Ming-Bao Pang(庞明宝), Bo-Ning Ren(任泊宁). Chin. Phys. B, 2017, 26(10): 108901.
[4] Influence of bus stop with left-turn lines between two adjacent signalized intersections
Ming-Bao Pang(庞明宝), Lan-Hang Ye(叶兰杭), Ya-Nan Pei(裴亚男). Chin. Phys. B, 2016, 25(8): 088901.
[5] Pedestrian choice behavior analysis and simulation of vertical walking facilities in transfer station
Yong-Xing Li(李永行), Hong-Fei Jia(贾洪飞), Jun Li(李军), Ya-Nan Zhou(周亚楠), Zhi-Lu Yuan(原志路), Yan-Zhong Li(李延忠). Chin. Phys. B, 2016, 25(10): 108901.
[6] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
[7] Study on bi-directional pedestrian movement using ant algorithms
Sibel Gokce, Ozhan Kayacan. Chin. Phys. B, 2016, 25(1): 010508.
[8] Stair evacuation simulation based on cellular automataconsidering evacuees' walk preferences
Ding Ning (丁宁), Zhang Hui (张辉), Chen Tao (陈涛), Peter B. Luh. Chin. Phys. B, 2015, 24(6): 068801.
[9] A cellular automata model of traffic flow with variable probability of randomization
Zheng Wei-Fan (郑伟范), Zhang Ji-Ye (张继业). Chin. Phys. B, 2015, 24(5): 058902.
[10] A new cellular automaton for signal controlled traffic flow based on driving behaviors
Wang Yang (王扬), Chen Yan-Yan (陈艳艳). Chin. Phys. B, 2015, 24(3): 038902.
[11] Cellular automata model for traffic flow with safe driving conditions
María Elena Lárraga, Luis Alvarez-Icaza. Chin. Phys. B, 2014, 23(5): 050701.
[12] Epidemic propagation on adaptive coevolutionary networks with preferential local-world reconnecting strategy
Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平), Gong Yong-Wang (巩永旺). Chin. Phys. B, 2013, 22(4): 040205.
[13] Simulation of pedestrian evacuation based on an improved dynamic parameter model
Zhu Nuo(朱诺), Jia Bin(贾斌), Shao Chun-Fu(邵春福), and Yue Hao(岳昊) . Chin. Phys. B, 2012, 21(5): 050501.
[14] Characteristics of synchronized traffic in mixed traffic flow
Ning Hong-Xin(宁宏新) and Xue Yu(薛郁) . Chin. Phys. B, 2012, 21(4): 040506.
[15] Analytical investigation of the boundary-triggered phase transition dynamics in a cellular automata model with a slow-to-start rule
Jia Ning (贾宁), Ma Shou-Feng (马寿峰), Zhong Shi-Quan (钟石泉). Chin. Phys. B, 2012, 21(10): 100206.
No Suggested Reading articles found!