ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Achieving acoustic cloak by using compressible background flow |
Ruo-Yang Zhang(张若洋)1, Qing Zhao(赵清)2, Mo-Lin Ge(葛墨林)1,2 |
1 Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China;
2 School of Physics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid. The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach. The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation (or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.
|
Received: 01 March 2016
Revised: 10 April 2016
Accepted manuscript online:
|
PACS:
|
47.35.Rs
|
(Sound waves)
|
|
47.40.-x
|
(Compressible flows; shock waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475088 and 11275024) and the Fund from the Ministry of Science and Technology of China (Grant No. 2013YQ030595-3). |
Corresponding Authors:
Mo-Lin Ge
E-mail: geml@nankai.edu.cn
|
Cite this article:
Ruo-Yang Zhang(张若洋), Qing Zhao(赵清), Mo-Lin Ge(葛墨林) Achieving acoustic cloak by using compressible background flow 2016 Chin. Phys. B 25 084702
|
[1] |
Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
|
[2] |
Leonhardt U 2006 Science 312 1777
|
[3] |
Schurig D, Pendry J B and Smith D R 2006 Opt. Express 14 9794
|
[4] |
Chen H, Chan C T and Sheng P 2010 Nat. Mater. 9 387
|
[5] |
Pendry J B, Luo Y and Zhao R 2015 Science 348 521
|
[6] |
Leonhardt U and Philbin T 2010 Geometry and Light:The Scicence of Invisibility (New York:Dover) pp. 210-215
|
[7] |
Cummer S A, Rahm M and Schurig D 2008 New J. Phys. 10 115025
|
[8] |
Chen H and Chan C T 2010 J. Phys. D:Appl. Phys. 43 113001
|
[9] |
Cummer S A and Schurig D 2007 New J. Phys. 9 45
|
[10] |
Chen H and Chan C T 2007 Appl. Phys. Lett. 91 183518
|
[11] |
Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J B, Rahm M and Starr A 2008 Phys. Rev. Lett. 100 024301
|
[12] |
Norris A N 2008 Proc. R. Soc. A 464 2411
|
[13] |
Ma H, Qu S B, Xu Z and Wang J F 2009 Chin. Phys. B 18 1123
|
[14] |
Farhat M, Enoch S, Guenneau S and Movchan A B 2008 Phys. Rev. Lett. 101 134501
|
[15] |
Zhang S, Xia C and Fang N 2011 Phys. Rev. Lett. 106 024301
|
[16] |
Popa B I, Zigoneanu L and Cummer S A 2011 Phys. Rev. Lett. 106 253901
|
[17] |
Sanchis L, García-Chocano V M, Llopis-Pontiveros R, Climente A, Martínez-Pastor J, Cervera F and Sánchez-Dehesa J 2013 Phys. Rev. Lett. 110 124301
|
[18] |
Zigoneanu L, Popa B I and Cummer S A 2014 Nat. Mater. 13 352
|
[19] |
Gordon W 1923 Ann. Phys. 377 421
|
[20] |
Leonhardt U and Piwnicki P 1999 Phys. Rev. A 60 4301
|
[21] |
Leonhardt U and Piwnicki P 2000 Phys. Rev. Lett. 84 822
|
[22] |
De Lorenci V A, Klippert R and Obukhov Y N 2003 Phys. Rev. D 68 061502
|
[23] |
White R W 1973 J. Acoust. Soc. Am. 53 1700
|
[24] |
Unruh W G 1981 Phys. Rev. Lett. 46 1351
|
[25] |
Unruh W G 1995 Phys. Rev. D 51 2827
|
[26] |
Visser M 1998 Class. Quantum Gravity 15 1767
|
[27] |
Fischer U R and Visser M 2002 Phys. Rev. Lett. 88 110201
|
[28] |
Schützhold R and Unruh W G 2002 Phys. Rev. D 66 044019
|
[29] |
Unruh W G 2008 Phil. Trans. Roy. Soc. A 366 2905
|
[30] |
Bergliaffa S E P, Hibberd K, Stone M and Visser M 2004 Physica D 191 121
|
[31] |
Garay L J, Anglin J R, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 85 4643
|
[32] |
Garay L J, Anglin J R, Cirac J I and Zoller P 2000 Phys. Rev. A 63 023611
|
[33] |
Barcelo C, Liberati S and Visser M 2001 Class. Quantum Gravity 18 1137
|
[34] |
Leonhardt U, Kiss T and Öhberg P 2003 J. Opt. B:Quantum Semiclass. Opt. 5 S42
|
[35] |
Lahav O, Itah A, Blumkin A, Gordon C, Rinott S, Zayats A and Steinhauer J 2010 Phys. Rev. Lett. 105 240401
|
[36] |
Horstmann B, Reznik B, Fagnocchi S and Cirac J I 2010 Phys. Rev. Lett. 104 250403
|
[37] |
Nguyen H S, Gerace D, Carusotto I, Sanvitto D, Galopin E, Lemaître A, Sagnes I, Bloch J and Amo A 2015 Phys. Rev. Lett. 114 036402
|
[38] |
García-Meca C, Carloni S, Barceló C, Jannes G, Sánchez-Dehesa J and Martínez A 2013 Sci. Rep. 3 2009
|
[39] |
García-Meca C, Carloni S, Barceló C, Jannes G, Sánchez-Dehesa J and Martínez A 2014 Wave Motion 51 785
|
[40] |
García-Meca C, Carloni S, Barceló C, Jannes G, Sánchez-Dehesa J and Martínez A 2014 Photonic. Nanostruct. 12 312
|
[41] |
García-Meca C, Carloni S, Barceló C, Jannes G, Sánchez-Dehesa J and Martínez A 2014 Phys. Rev. B 90 024310
|
[42] |
Landau L and Lifshitz E 1987 Fluid Mechanics, 2nd edn. (Oxford:Pergamon) pp. 2, 17, 264
|
[43] |
Oertel H 2004 Prandtl-Essentials of Fluid Mechanics, 2nd edn. (New York:Springer) pp. 248-252
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|