CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide |
Ali Badawi |
Department of Physics, Faculty of Science, Taif University, Taif, Saudi Arabia |
|
|
Abstract The photovoltaic performance of CdS quantum dots sensitized solar cells (QDSSCs) using the 0.2 wt% of reduced graphene oxide and TiO2 nanoparticles (RGO+TiO2 nanocomposite) photoanode is investigated. CdS QDs are adsorbed onto RGO+TiO2 nanocomposite films by the successive ionic layer adsorption and reaction (SILAR) technique for several cycles. The current density-voltage (J-V) characteristic curves of the assembled QDSSCs are measured at AM1.5 simulated sunlight. The optimal photovoltaic performance for CdS QDSSC was achieved for six SILAR cycles. Solar cells based on the RGO+TiO2 nanocomposite photoanode achieve a 33% increase in conversion efficiency (η) compared with those based on plain TiO2 nanoparticle (NP) photoanodes. The electron back recombination rates decrease significantly for CdS QDSSCs based on RGO+TiO2 nanocomposite photoanodes. The lifetime constant (τ) for CdS QDSSC based on the RGO+TiO2 nanocomposite photoanode is at least one order of magnitude larger than that based on the bare TiO2 NPs photoanode.
|
Received: 10 September 2014
Revised: 14 November 2014
Accepted manuscript online:
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
78.67.Sc
|
(Nanoaggregates; nanocomposites)
|
|
78.67.Hc
|
(Quantum dots)
|
|
Fund: Project supported by the Fund from Taif University, Saudi Arabia (Grant No. 1/435/3524). |
Corresponding Authors:
Ali Badawi
E-mail: adaraghmeh@yahoo.com
|
Cite this article:
Ali Badawi Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide 2015 Chin. Phys. B 24 047205
|
[1] |
Badawi A, Al-Hosiny N, Abdallah S, Negm S and Talaat H 2013 Sol. Energy 88 137
|
[2] |
Samadpour M, Zad A I and Molaei M 2014 Chin. Phys. B 23 047302
|
[3] |
Yang Z and Chang H T 2010 Sol. Energy Mater. Sol. Cells 94 2046
|
[4] |
Lin M C and Lee M W 2011 Elec. Comm. 13 1376
|
[5] |
Li Y, Pang A, Zheng X and Wei M 2011 Electrochim. Acta 56 4902
|
[6] |
Yum J H, Choi S H, Kim S S, Kim D Y and Sung Y E 2007 J. Korean Phys. Soc. 10 257
|
[7] |
Prabakar K, Seo H, Son M and Kim H 2009 Mater. Chem. Phys. 117 26
|
[8] |
Emin S, Singh S P, Han L, Satoh N and Islam A 2011 Sol. Energy 85 1264
|
[9] |
Tubtimtae A, Wu K L, Tung H Y, Lee M W and Wang G J 2010 Elec. Comm. 12 1158
|
[10] |
Badawi A, Al-Hosiny N, Abdallah S and Talaat H 2013 Materials Science-Poland 31 6
|
[11] |
Al-Hosiny N, Abdallah S, Badawi A, Easawi K and Talaat H 2014 Mater. Sci. Semicond. Process. 26 238
|
[12] |
Kamat P V 2007 J. Phys. Chem. C 111 2834
|
[13] |
Xie Y, Yoo S H, Chen C and Cho S O 2012 Mater. Sci. Eng. B 177 106
|
[14] |
Ma W, Zhang F and Meng S 2014 Chin. Phys. B 23 086801
|
[15] |
Fan S Q, Kim D, Kim J J, Jung D W, Kang S O and Ko J 2009 Elec. Comm. 11 1337
|
[16] |
Jiao J, Zhou Z J, Zhou W H and Wu S X 2013 Mater. Sci. Semicond. Process. 16 435
|
[17] |
Kamat P V 2008 J. Phys. Chem. C 112 18737
|
[18] |
Wang X, Zheng J, Sui X, Xie H, Liu B and Zhao X 2013 Dalton Transactions 42 14726
|
[19] |
Mora Seró I a, SixtoGiménez, Moehl T, Fabregat Santiago F, Lana Villareal T, Gómez R and Bisquert J 2008 Nanotechnology 19 424007
|
[20] |
Xiang B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M and Cai J 2008 Chin. Phys. B 17 3713
|
[21] |
Khurana G, Sahoo S, Barik S K and Katiyar R S 2013 J. Alloys Compd. 578 257
|
[22] |
Ruhle S, Shalom M and Zaban A 2010 Chem. Phys. Chem. 11 2290
|
[23] |
Salant A, Shalom M, Hod I, Faust A, Zaban A and Banin U 2010 ACS Nano 4 5962
|
[24] |
Bang J H and Kamat P V 2009 ACS Nano 3 1467
|
[25] |
Pernik D R, Tvrdy K, Radich J G and Kamat P V 2011 J. Phys. Chem. C 115 13511
|
[26] |
Badawi A, Easawi K, Al-Hosiny N and Abdallah S 2014 Mater. Sci. Appl. 5 27
|
[27] |
Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P V 2008 J. Am. Chem. Soc. 130 4007
|
[28] |
Hu Y, Wang B, Zhang J, Wang T, Liu R, Zhang J, Wang X and Wang H 2013 Nanoscale Research Letters 8 222
|
[29] |
Ding J, Wang M, Deng J, Gao W, Yang Z, Ran C and Zhang X 2014 J. Alloys Compd. 582 29
|
[30] |
Li B, Liu T, Wang Y and Wang Z 2012 J. Colloid Interf. Sci. 377 114
|
[31] |
Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R and Zhang W L 2012 Chin. Phys. B 21 118101
|
[32] |
Yan J, Uddin M J, Dickens T J and Okoli O I 2013 Sol. Energy 96 239
|
[33] |
Anwar H, George A E and Hill I G 2013 Sol. Energy 88 129
|
[34] |
Song J, Yin Z, Yang Z, Amaladass P, Wu S, Ye J, Zhao Y, Deng W Q, Zhang H and Liu X W 2011 Chemistry: A European Journal 17 10832
|
[35] |
Fang X, Li M, Guo K, Zhu Y, Hu Z, Liu X, Chen B and Zhao X 2012 Electrochimica Acta 65 174
|
[36] |
Badawi A, Al-Hosiny N, Abdallah S, Merazga A and Talaat H 2014 Mater. Sci. Semicond. Process. 26 162
|
[37] |
Luan X, Chen L, Zhang J, Qu G, Flake J C and Wang Y 2013 Electrochimica Acta 111 216
|
[38] |
Peining Z, Nair A S, Shengyuan Y, Shengjie P, Elumalai N K and Ramakrishna S 2012 J. Photochem. Photobio. A: Chemistry 231 9
|
[39] |
Yu J, Fan J and Cheng B 2011 J. Power Sources 196 7891
|
[40] |
Syrrokostas G, Giannouli M and Yianoulis P 2009 Renewable Energy 34 1759
|
[41] |
Zhang Y, Zhu J, Yu X, Wei J, Hu L and Dai S 2012 Sol. Energy 86 964
|
[42] |
Lee E S, Lee K M, Yoon S I, Ko Y G and Shin D H 2013 Curr. Appl. Phys. 13, Suppl. 2 S26-S29
|
[43] |
Abdallah S, Al-Hosiny N and Badawi A 2012 J. Nanomater. 2012 6
|
[44] |
Ma P C, Siddiqui N A, Marom G and Kim J K 2010 Composites: Part A 41 1345
|
[45] |
Pomoni K, Sofianou M V, Georgakopoulos T, Boukos N and Trapalis C 2013 J. Alloys Compd. 548 194
|
[46] |
Al-Juaid F, Merazga A, Al-Baradi A and Abdel-wahab F 2013 Solid State Electron. 87 98
|
[47] |
Kim J, Choi H, Nahm C, Moon J, Kim C, Nam S, Jung D R and Park B 2011 J. Power Sources 196 10526
|
[48] |
Kim D Y, Joshi B N, Park J J, Lee J G, Cha Y H, Seong T Y, In Noh S, Ahn H J, Al-Deyabe S S and Yoon S S 2014 Ceramics International 40 11089
|
[49] |
Yu P, Zhu K, Norman A G, Ferrere S, Frank A J and Nozik A J 2006 J. Phys. Chem. B 110 25451
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|