ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A theoretical investigation on anomalous switching of single-stranded deoxyribonucleic acid (ssDNA) monolayers by water vapor |
Zhao Xin-Jun (赵新军)a, Gao Zhi-Fu (高志福)b, Jiang Zhong-Ying (蒋中英)a |
a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; b Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, Xinjiang Uygur Autonomous Region, China |
|
|
Abstract In this paper, we use a molecular theory to study the anomalous switching of ssDNA monolayers. Here, both ssDNA-water and water-water hydrogen bonds and their explicit coupling to the ssDNA conformations are considered. We find that hydrogen bonding becomes a key element in inducing the anomalous switching of ssDNA monolayers. This finding accords well with the experimental observations. Based on our theoretical model, we predict that the anomalous switching induced by water vapor will be applicable to a wide range of hydrogen bonds polymers, and ssDNA-water hydrogen bonds and water-water hydrogen bonds hybridization will lead to the hydrogen-bond network formation of 3D ssDNA monolayers.
|
Received: 08 July 2014
Revised: 19 October 2014
Accepted manuscript online:
|
PACS:
|
47.27.eb
|
(Statistical theories and models)
|
|
05.65.+b
|
(Self-organized systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21264016, 11464047, and 21364016), the National Basic Research Program of China (Grant No. 2012CB821500), and the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2013211A053). |
Corresponding Authors:
Zhao Xin-Jun
E-mail: zhaoxinjunzxj@163.com
|
Cite this article:
Zhao Xin-Jun (赵新军), Gao Zhi-Fu (高志福), Jiang Zhong-Ying (蒋中英) A theoretical investigation on anomalous switching of single-stranded deoxyribonucleic acid (ssDNA) monolayers by water vapor 2015 Chin. Phys. B 24 044701
|
[1] |
Steel A B, Levicky R L, Herne T M and Tarlov M J 2000 Biophys. J. 79 975
|
[2] |
Petrovykh D Y, Kimura-Suda H, Whitman L J and Tarlov M J 2003 J. Am. Chem. Soc. 125 5219
|
[3] |
Cicuta P and Terentjev E M 2005 Eur. Phys. J. E 16 147
|
[4] |
Shen G, Tercero N, Gaspar M A, Varughese B, Shepard K and Levicky R 2006 J. Am. Chem. Soc. 128 8427
|
[5] |
Xu Y, Chen H, Qu Y, Artem K. E, Li M, Ouyang Z C, Liu D S and Yan J 2014 Chin. Phys. B 23 068702
|
[6] |
Halperin A, Buhot A and Zhulina E B 2005 Biophys. J. 89 796
|
[7] |
Rappaport S M, Medaliona S and Rabin Y 2009 Soft Matter. 5 3010
|
[8] |
Tabata H, Cai L T, Gu J H, Tanaka S, Otsuka Y, Acho S Y, Taniguchi M and Kawa T 2003 Synth. Met. 469 133
|
[9] |
Katz E and Willner I 2003 Electroanalysis 15 913
|
[10] |
Ostblom M, Liedberg B, Demers L M and Mirkin C A 2005 J. Phys. Chem. B 109 15150
|
[11] |
Petrovykh D Y, Kimura-Suda H, Tarlov M J and Whitman L J 2004 Langmuir 20 42
|
[12] |
Homs W C 2002 I. Anal. Lett. 35 1875
|
[13] |
Brewer S H, Anthireya S J, Lappi S E, Drapcho D L and Franzen S 2002 Langmuir 18 4460
|
[14] |
Zhang R Y, Pang D W, Zhang Z L, Yan J W, Yao J L, Tian Z Q, Mao B W and Sun S G 2002 J. Phys. Chem. B 106 11233
|
[15] |
Strother T, Cai W, Zhao X S, Hamers R J and Smith L M 2000 J. Am. Chem. Soc. 122 1205
|
[16] |
Manning M and Redmond G 2005 Langmuir 21 395
|
[17] |
Ongaro A, Griffin F, Beecher P, Nagle L, Iacopino D, Quinn A, Redmond G and Fitzmaurice D 2005 Chem. Mater. 17 1959
|
[18] |
Zhang N H, Tan Z Q, Li J J, Meng W L and Xu L W 2011 Curr. Opin. Colloid. Interface Sci. 16 592
|
[19] |
Asanuma H, Noguchi H, Uosaki K and Yu H Z 2008 J. Am. Chem. Soc. 130 8016
|
[20] |
Levicky R, Herne T M, Tarlov M J and Satija S K 1998 J. Am. Chem. Soc. 120 9787
|
[21] |
Uline M J, Rabin Y and Szleifer I 2011 Langmuir 27 4679
|
[22] |
Mertens J, Rogero C, Calleja M, Ramos D, Martin-Gago J A, Briones C and Tamayo J 2008 Nat. Nanotechnol. 3 301
|
[23] |
Wagman M, Medalion S and Rabin Y 2012 Macromolecules 45 9517
|
[24] |
Tao N J, Lindsay S M and Rupprecht A 1989 Biopolymers 28 1019
|
[25] |
Schneider B and Berman H M 1995 Biophys. J. 69 2661
|
[26] |
Liu G M and Zhang G Z 2005 J. Phys. Chem. B 109 743
|
[27] |
Cheng H, Shen L and Wu C 2006 Macromolecules 39 2325
|
[28] |
Szleifer I and Carignano M A 1996 Adv. Chem. Phys. 94 165
|
[29] |
Carignano M A and Szleifer I 1993 J. Chem. Phys. 98 5006
|
[30] |
Szleifer I and Carignano M A 2000 Macromol. Rapid Commun. 21 423
|
[31] |
You X Y, Zheng X J and Zheng J R 2007 Acta Phys. Sin. 56 2323 (in Chinese)
|
[32] |
Dormidontova E E 1998 Macromolecules 31 2649
|
[33] |
Ren C L, Nap R J and Szleifer I 2008 J. Phys. Chem. B 112 16238
|
[34] |
Xu M Y, Du C and Mi J C 2011 Acta Phys. Sin. 60 034701 (in Chinese)
|
[35] |
Ren C L, Carvajal D, Shull K R and Szleifer I 2009 Langmuir 25 12283
|
[36] |
Lee H, Kim D H, Park H W, Mahynski N A, Kim K, Meron M, Lin B and Won Y Y 2012 J. Phys. Chem. Lett. 3 1589
|
[37] |
Weies W, Enders A and Nimtz G 1986 Phys. Rev. A 33 2137
|
[38] |
Bryan W P 1986 Biopolymers 25 1967
|
[39] |
Medalion S, Wagman M, Grosberg A Y and Rabin Y 2014 ACS Macro Lett. 3 191
|
[40] |
Egholm M, Buchardt O, Christensen L, Behrens C, Freier S M, Driver D A, Berg R H, Kim S K, Norden B and Nielsen P E 1993 Nature 365 566
|
[41] |
Anjana S and Nielsen P E 2009 Biophys. Chem. 141 29
|
[42] |
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H and Bauer S 2004 Science 303 1526
|
[43] |
Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang H W, Wang J, Zhu J K, Shi Y and Yan N 2013 Nature 504 168
|
[44] |
Sheehan P E and Whitman L J 2002 Phys. Rev. Lett. 88 156104
|
[45] |
Zou L Y, Bai J S, Li B Y, Tan D W, Li P and Liu C L 2008 Chin. Phys. B 17 1034
|
[46] |
Zhang Y J and Wang Z Z 2009 Acta Phy. Sin. 58 6074 (in Chinese)
|
[47] |
Wu J C, Qin S G and Wang Y 2009 Chin. Phys. Lett. 26 084702
|
[48] |
Wu J C, Qin S G and Lv X M 2010 Chin. Phys. Lett. 27 034701
|
[49] |
Tagliazucchi M, Rabin Y and Szleifer I 2011 J. Am. Chem. Soc. 133 17753
|
[50] |
Wang B B, Cui G X, Xu C X and Zhang Z S 2012 Chin. Phys. Lett. 29 104701
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|