Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044701    DOI: 10.1088/1674-1056/24/4/044701

A theoretical investigation on anomalous switching of single-stranded deoxyribonucleic acid (ssDNA) monolayers by water vapor

Zhao Xin-Jun (赵新军)a, Gao Zhi-Fu (高志福)b, Jiang Zhong-Ying (蒋中英)a
a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
b Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
Abstract  In this paper, we use a molecular theory to study the anomalous switching of ssDNA monolayers. Here, both ssDNA-water and water-water hydrogen bonds and their explicit coupling to the ssDNA conformations are considered. We find that hydrogen bonding becomes a key element in inducing the anomalous switching of ssDNA monolayers. This finding accords well with the experimental observations. Based on our theoretical model, we predict that the anomalous switching induced by water vapor will be applicable to a wide range of hydrogen bonds polymers, and ssDNA-water hydrogen bonds and water-water hydrogen bonds hybridization will lead to the hydrogen-bond network formation of 3D ssDNA monolayers.
Keywords:  molecular theory      ssDNA monolayers      anomalous switching      hydrogen bonding  
Received:  08 July 2014      Revised:  19 October 2014      Accepted manuscript online: 
PACS:  47.27.eb (Statistical theories and models)  
  05.65.+b (Self-organized systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21264016, 11464047, and 21364016), the National Basic Research Program of China (Grant No. 2012CB821500), and the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2013211A053).
Corresponding Authors:  Zhao Xin-Jun     E-mail:

Cite this article: 

Zhao Xin-Jun (赵新军), Gao Zhi-Fu (高志福), Jiang Zhong-Ying (蒋中英) A theoretical investigation on anomalous switching of single-stranded deoxyribonucleic acid (ssDNA) monolayers by water vapor 2015 Chin. Phys. B 24 044701

[1] Steel A B, Levicky R L, Herne T M and Tarlov M J 2000 Biophys. J. 79 975
[2] Petrovykh D Y, Kimura-Suda H, Whitman L J and Tarlov M J 2003 J. Am. Chem. Soc. 125 5219
[3] Cicuta P and Terentjev E M 2005 Eur. Phys. J. E 16 147
[4] Shen G, Tercero N, Gaspar M A, Varughese B, Shepard K and Levicky R 2006 J. Am. Chem. Soc. 128 8427
[5] Xu Y, Chen H, Qu Y, Artem K. E, Li M, Ouyang Z C, Liu D S and Yan J 2014 Chin. Phys. B 23 068702
[6] Halperin A, Buhot A and Zhulina E B 2005 Biophys. J. 89 796
[7] Rappaport S M, Medaliona S and Rabin Y 2009 Soft Matter. 5 3010
[8] Tabata H, Cai L T, Gu J H, Tanaka S, Otsuka Y, Acho S Y, Taniguchi M and Kawa T 2003 Synth. Met. 469 133
[9] Katz E and Willner I 2003 Electroanalysis 15 913
[10] Ostblom M, Liedberg B, Demers L M and Mirkin C A 2005 J. Phys. Chem. B 109 15150
[11] Petrovykh D Y, Kimura-Suda H, Tarlov M J and Whitman L J 2004 Langmuir 20 42
[12] Homs W C 2002 I. Anal. Lett. 35 1875
[13] Brewer S H, Anthireya S J, Lappi S E, Drapcho D L and Franzen S 2002 Langmuir 18 4460
[14] Zhang R Y, Pang D W, Zhang Z L, Yan J W, Yao J L, Tian Z Q, Mao B W and Sun S G 2002 J. Phys. Chem. B 106 11233
[15] Strother T, Cai W, Zhao X S, Hamers R J and Smith L M 2000 J. Am. Chem. Soc. 122 1205
[16] Manning M and Redmond G 2005 Langmuir 21 395
[17] Ongaro A, Griffin F, Beecher P, Nagle L, Iacopino D, Quinn A, Redmond G and Fitzmaurice D 2005 Chem. Mater. 17 1959
[18] Zhang N H, Tan Z Q, Li J J, Meng W L and Xu L W 2011 Curr. Opin. Colloid. Interface Sci. 16 592
[19] Asanuma H, Noguchi H, Uosaki K and Yu H Z 2008 J. Am. Chem. Soc. 130 8016
[20] Levicky R, Herne T M, Tarlov M J and Satija S K 1998 J. Am. Chem. Soc. 120 9787
[21] Uline M J, Rabin Y and Szleifer I 2011 Langmuir 27 4679
[22] Mertens J, Rogero C, Calleja M, Ramos D, Martin-Gago J A, Briones C and Tamayo J 2008 Nat. Nanotechnol. 3 301
[23] Wagman M, Medalion S and Rabin Y 2012 Macromolecules 45 9517
[24] Tao N J, Lindsay S M and Rupprecht A 1989 Biopolymers 28 1019
[25] Schneider B and Berman H M 1995 Biophys. J. 69 2661
[26] Liu G M and Zhang G Z 2005 J. Phys. Chem. B 109 743
[27] Cheng H, Shen L and Wu C 2006 Macromolecules 39 2325
[28] Szleifer I and Carignano M A 1996 Adv. Chem. Phys. 94 165
[29] Carignano M A and Szleifer I 1993 J. Chem. Phys. 98 5006
[30] Szleifer I and Carignano M A 2000 Macromol. Rapid Commun. 21 423
[31] You X Y, Zheng X J and Zheng J R 2007 Acta Phys. Sin. 56 2323 (in Chinese)
[32] Dormidontova E E 1998 Macromolecules 31 2649
[33] Ren C L, Nap R J and Szleifer I 2008 J. Phys. Chem. B 112 16238
[34] Xu M Y, Du C and Mi J C 2011 Acta Phys. Sin. 60 034701 (in Chinese)
[35] Ren C L, Carvajal D, Shull K R and Szleifer I 2009 Langmuir 25 12283
[36] Lee H, Kim D H, Park H W, Mahynski N A, Kim K, Meron M, Lin B and Won Y Y 2012 J. Phys. Chem. Lett. 3 1589
[37] Weies W, Enders A and Nimtz G 1986 Phys. Rev. A 33 2137
[38] Bryan W P 1986 Biopolymers 25 1967
[39] Medalion S, Wagman M, Grosberg A Y and Rabin Y 2014 ACS Macro Lett. 3 191
[40] Egholm M, Buchardt O, Christensen L, Behrens C, Freier S M, Driver D A, Berg R H, Kim S K, Norden B and Nielsen P E 1993 Nature 365 566
[41] Anjana S and Nielsen P E 2009 Biophys. Chem. 141 29
[42] Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H and Bauer S 2004 Science 303 1526
[43] Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang H W, Wang J, Zhu J K, Shi Y and Yan N 2013 Nature 504 168
[44] Sheehan P E and Whitman L J 2002 Phys. Rev. Lett. 88 156104
[45] Zou L Y, Bai J S, Li B Y, Tan D W, Li P and Liu C L 2008 Chin. Phys. B 17 1034
[46] Zhang Y J and Wang Z Z 2009 Acta Phy. Sin. 58 6074 (in Chinese)
[47] Wu J C, Qin S G and Wang Y 2009 Chin. Phys. Lett. 26 084702
[48] Wu J C, Qin S G and Lv X M 2010 Chin. Phys. Lett. 27 034701
[49] Tagliazucchi M, Rabin Y and Szleifer I 2011 J. Am. Chem. Soc. 133 17753
[50] Wang B B, Cui G X, Xu C X and Zhang Z S 2012 Chin. Phys. Lett. 29 104701
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[4] Effects of thiocyanate anions on switching and structure of poly(N-isopropylacrylamide) brushes
Xin-Jun Zhao(赵新军), Zhi-Fu Gao(高志福). Chin. Phys. B, 2019, 28(6): 064701.
[5] Interface states study of intrinsic amorphous silicon for crystalline silicon surface passivation in HIT solar cell
You-Peng Xiao(肖友鹏), Xiu-Qin Wei(魏秀琴), Lang Zhou(周浪). Chin. Phys. B, 2017, 26(4): 048104.
[6] Structure and switching of single-stranded DNA tethered to a charged nanoparticle surface
Xin-Jun Zhao(赵新军), Zhi-Fu Gao(高志福). Chin. Phys. B, 2016, 25(7): 074702.
[7] Role of hydrogen bonding in solubility of poly(N-isopropylacrylamide) brushes in sodium halide solutions
Xin-Jun Zhao(赵新军), Zhi-Fu Gao(高志福). Chin. Phys. B, 2016, 25(7): 074703.
[8] New observations on hydrogen bonding in ice by density functional theory simulations
Zhang Peng (张鹏), Liu Yang (刘扬), Yu Hui (于惠), Han Sheng-Hao (韩圣浩), Lü Ying-Bo (吕英波), Lü Mao-Shui (吕茂水), Cong Wei-Yan (丛伟艳). Chin. Phys. B, 2014, 23(2): 026103.
[9] Two-photon absorption properties of aggregation systems on the basis of (E)-4-(2-nitrovinyl) benzenamine molecules
Wang Chuan-Kui(王传奎), Zhang Zhen(张珍), Ding Ming-Cui(丁明翠), Li Xiao-Jing(李小静), Sun Yuan-Hong(孙元红), and Zhao Ke(赵珂). Chin. Phys. B, 2010, 19(10): 103304.
[10] Solvent effects on structure and optical properties of a D-$\pi$-A azobenzene dye
Wang Chuan-Kui(王传奎), Xing Xiao-Juan(邢晓娟), Huang Xiao-Ming(黄晓明), and Gao Yun(高云). Chin. Phys. B, 2007, 16(11): 3323-3327.
No Suggested Reading articles found!