Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 103304    DOI: 10.1088/1674-1056/19/10/103304

Two-photon absorption properties of aggregation systems on the basis of (E)-4-(2-nitrovinyl) benzenamine molecules

Wang Chuan-Kui(王传奎)a)†, Zhang Zhen(张珍)a), Ding Ming-Cui(丁明翠)a), Li Xiao-Jing(李小静)a), Sun Yuan-Hong(孙元红)b), and Zhao Ke(赵珂)a)
a College of Physics and Electronics, Shandong Normal University, Jinan 250014, China; b Fundamental Division, Shandong Police College, Jinan 250014, China
Abstract  Aggregation effect caused by the intermolecular hydrogen-bonding interactions on two-photon absorption properties of (E)-4-(2-nitrovinyl) benzenamine molecules is studied at a hybrid density functional level. The geometry optimization studies indicate that there exist two probable conformations for the dimers and three for the trimers. A strong red-shift of the charge-transfer states is shown. The two-photon absorption cross sections of the molecule for certain conformations are greatly enhanced by the aggregation effect, from which a ratio of 1.0:2.6:3.6 is found for the molecule and its dimer and trimer with nearly planar structures. Namely, a 30 or 20 percent increase of the two-photon absorption cross section is observed.
Keywords:  two-photon absorption      aggregate effect      hydrogen bonding      organic molecule  
Received:  06 May 2010      Revised:  18 May 2010      Accepted manuscript online: 
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  32.80.-t (Photoionization and excitation)  
  34.70.+e (Charge transfer)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB806000), the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics), and the National Natural Science Foundation of China (Grant No. 10974121).

Cite this article: 

Wang Chuan-Kui(王传奎), Zhang Zhen(张珍), Ding Ming-Cui(丁明翠), Li Xiao-Jing(李小静), Sun Yuan-Hong(孙元红), and Zhao Ke(赵珂) Two-photon absorption properties of aggregation systems on the basis of (E)-4-(2-nitrovinyl) benzenamine molecules 2010 Chin. Phys. B 19 103304

[1] Ehrlich J E, Wu X L, Lee I S, Hu Z H, Rõckel H, Marder S R and Perry J W 1997 Opt. Lett. 22 1843
[2] Said A A, Wamsely C, Hagan D J, Van Stryland E W, Reinhardt B A, Roderer P and Dillard A G 1994 Chem. Phys. Lett. 228 646
[3] He G S, Gvishi R, Prasad P N and Reinhardt B 1995 Opt. Commun. 117 133
[4] Denk W, Strickler J H and Webb W W 1990 Science 248 73
[5] Rentzepis P M and Parthenopoulos S D A 1989 Science 245 843
[6] Strickler J H and Webb W W 1991 Opt. Lett. 16 1780
[7] Cumpston B H, Anthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J, Rockel H, Rumi M, Wu X L, Marder S R and Perry J W 1999 Nature 398 51
[8] Ferrighi L, Frediani L, Fossgaard E and Ruud K 2007 J. Chem. Phys. 127 244103
[9] Wang C K, Zhao K, Su Y, Ren Y, Zhao X and Luo Y 2003 J. Chem. Phys. 119 1208
[10] Miertus S, Scrocco E and Tomasi J 1981 Chem. Phys. 55 117
[11] Tomasi J and Persico M 1994 Chem. Rev. 94 2027
[12] Cammi R, Cossi M and Tomasi J 1996 J. Chem. Phys. 104 4611
[13] Wang C K, Huang X M, Xing X J and Gao Y 2007 Chin. Phys. 16 3323
[14] Guo Y H, Sun Y H, Tao L M, Zhao K and Wang C K 2005 Chin. Phys. 14 2202
[15] Wang C K, Wang Y H, Su Y and Luo Y 2003 J. Chem. Phys. 119 4409
[16] Datta A and Pati S K 2003 J. Chem. Phys. 118 8420
[17] Tu Y Q, Luo Y and AAgren H 2005 J. Phys. Chem. B 109 16730
[18] Sun Y H, Li J, Zhao K and Wang C K 2010 Chin. Phys. B 19 044207
[19] Liu K, Wang Y H, Tu Y Q, AAgren H and Luo Y 2008 J. Phys. Chem. B 112 4387
[20] Liu Z J, Shao P, Huang Z, Liu B, Chen T and Qin J G 2008 Chem. Commun. 19 2260
[21] Zhao K, Tu Y Q and Luo Y 2009 J. Phys. Chem. B 113 10271
[22] Kanis D R, Ratner M A and Marks T J 1994 Chem. Rev. 94 195
[23] Monson P R and McClain W M 1970 J. Chem. Phys. 53 29
[24] Albota M, Beljonne D, Br'edas J L, Ehrlich J E, Fu J Y, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, McCord-Maughon D, Perry J W, Rõckel H, Rumi M, Subramaniam G, Webb W W, Wu X L and Xu C 1998 Science 281 1653
[25] Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.02 Wallingford, CT: Gaussian Inc.
[26] Angeli C, Bak K L, Bakken V, et al. 2005 Dalton2.0, Release2.0 endfootnotesize
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[4] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[5] Ultrafast carrier dynamics of Cu2O thin film induced by two-photon excitation
Jian Liu(刘建), Jing Li(李敬), Kai-Jun Mu(牧凯军), Xin-Wei Shi(史新伟), Jun-Qiao Wang(王俊俏), Miao Mao(毛淼), Shu Chen(陈述), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(11): 114205.
[6] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[7] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[8] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[9] High-power ultraviolet 278-nm laser from fourth-harmonic generation of an Nd: YAG amplifier in CsB3O5 crystal
Miao He(何苗), Feng Yang(杨峰), Cheng Dong(董程), Zhi-Chao Wang(王志超), Lei Yuan(袁磊), Yi-Ting Xu(徐一汀), Guo-Chun Zhang(张国春), Zhi-Min Wang(王志敏), Yong Bo(薄勇), Qin-Jun Peng(彭钦军), Da-Fu Cui(崔大复), Yi-Cheng Wu(吴以成), Zu-Yan Xu(许祖彦). Chin. Phys. B, 2018, 27(5): 054211.
[10] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[11] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[12] Isomerism and coordination mode effects on two-photon absorption of tris(picolyl)amine-based fluorescent probes for zinc ions
Ke Zhao(赵珂), Jun Song(宋军), Mei-Yu Zhu(朱美玉), Han Zhang(张瀚), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(10): 103301.
[13] Optical power limiting of ultrashort hyper-Gaussian pulses in cascade three-level system
Ji-Cai Liu(刘纪彩), Fen-Fen Guo(郭芬芬), Ya-Nan Zhao(赵亚男), Xing-Zhe Li(李兴哲). Chin. Phys. B, 2018, 27(10): 104209.
[14] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[15] Responsive mechanism of three novel hypochlorous acid fluorescent probes and solvent effect on their sensing performance
Yong Zhou(周勇), Yun-Kun Wang(王云坤), Xiao-Fei Wang(王晓菲), Yu-Jin Zhang(张玉瑾), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(8): 083102.
No Suggested Reading articles found!