Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 038801    DOI: 10.1088/1674-1056/24/3/038801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Boron implanted emitter for n-type silicon solar cell

Liang Peng (梁鹏), Han Pei-De (韩培德), Fan Yu-Jie (范玉洁), Xing Yu-Peng (邢宇鹏)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

The effects of ion doses on the properties of boron implanted Si for n-type solar cell application were investigated with doses ranging from 5× 1014 cm-2 to 2× 1015 cm-2 and a subsequent two-step annealing process in a tube furnace. With the help of the TCAD process simulation tool, knowledge on diffusion kinetics of dopants and damage evolution was obtained by fitting SIMS measured boron profiles. Due to insufficient elimination of the residual damage, the implanted emitter was found to have a higher saturation current density (J0e) and a poorer crystallographic quality. Consistent with this observation, Voc, Jsc, and the efficiency of the all-implanted p+-n-n+ solar cells followed a decreasing trend with an increase of the implantation dose. The obtained maximum efficiency was 19.59% at a low dose of 5× 1014 cm-2. The main efficiency loss under high doses came not only from increased recombination of carriers in the space charge region revealed by double-diode parameters of dark I-V curves, but also from the degraded minority carrier diffusion length in the emitter and base evidenced by IQE data. These experimental results indicated that clusters and dislocation loops had appeared at high implantation doses, which acted as effective recombination centers for photogenerated carriers.

Keywords:  boron implanted emitter      n-type silicon      clusters and dislocation loops      saturation current density  
Received:  27 September 2014      Revised:  23 October 2014      Accepted manuscript online: 
PACS:  88.40.jj (Silicon solar cells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61275040, 60976046, and 61021003) and the National Basic Research Program of China (Grant No. 2012CB934200).

Corresponding Authors:  Liang Peng     E-mail:  liangpeng@semi.ac.cn

Cite this article: 

Liang Peng (梁鹏), Han Pei-De (韩培德), Fan Yu-Jie (范玉洁), Xing Yu-Peng (邢宇鹏) Boron implanted emitter for n-type silicon solar cell 2015 Chin. Phys. B 24 038801

[1] Douglas E C and Daiello R V 1980 IEEE Trans. Electron Devices 27 792
[2] Minnucci J A, Kirkpatrick A R and Matthei K W 1980 IEEE Trans. Electron Devices 27 802
[3] Spitzer M B, Tobin S P and Keavney C J 1984 IEEE Trans. Electron Devices 31 546
[4] Rohatgi A, Meier D L, McPherson B, Ok Y W, Upadhyaya A D, Lai J H and Zimbardi F 2012 Energy Procedia 15 10
[5] Bateman N, Sullivan P, Reichel C, Benick J and Hermle M 2011 Proceedings of SiliconPV 2011 Conference, 2011, Freiburg, Germany, p. 509
[6] Low R, Gupta A, Gossmann H, Mullin J, Yelundur V, Damiani B, Chandrasekaran V, Meier D, McPherson B and Rohatgi A 2011 Proceedings of 37th IEEE Photovoltaic Specialists Conference, 2011, Seattle, WA, p. 001924
[7] Shen Z N, Xia Y, Liu B W, Liu J H, Li C B and Li Y T 2014 Chin. Phys. B 23 118801
[8] Meier D L, Chandrasekaran V, Davis H H and Payne A M 2011 IEEE J. Photovoltaics 1 123
[9] Qiu H B, Li H Q and Liu B W 2014 Chin. Phys. B 23 027301
[10] Zhang X, Liu B W and Zhao Y 2013 Chin. Phys. B 22 127303
[11] Uda K and Kamoshida M 1977 J. Appl. Phys. 48 18
[12] Csepregi L, Chu W K, Muller H and Mayer J W 1976 Radiat. Eff. 28 227
[13] http://www.silvaco.com.cn/
[14] Sinton R A and Cuevas A 1996 Appl. Phys. Lett. 69 2510
[15] McIntosh K R and Altermatt P P 2010 Proceedings of 35th IEEE Photovoltaic Specialists Conference, 2010, Honolulu, USA, p. 2188
[16] Schreutelkamp R J, Custer J S, Liefting J R, Lu W X and Saris F W 1991 Materials Science Reports 6 275
[17] Cohen B G 1967 Solid State Electron 10 33
[18] Biersack J P and Ziegler J F 1982 Ion Implantation Techniques (Berlin: Springer-Verlag) p. 123
[19] Privitera V, Coffa S, Priolo F, Larsen K K and Mannino G 1996 Appl. Phys. Lett. 68 3422
[20] Eaglesham D J, Stolk P A, Gossmann H J and Poate J M 1994 Appl. Phys. Lett. 65 2305
[21] Pan G Z and Tu K N 1997 J. Appl. Phys. 82 601
[22] Mok K R C, Naber R C G and Nanver L K 2012 Proceedings of 19th International Conference on Ion Implantation Technology, 2012, Valladolid, Spain, p. 245
[23] Sze S M and Kwok K N 2008 Physics of Semiconductor Devices (3rd edn.) (New York: Wiley) p. 188
[24] Green M A, Blakers A W and Osterwald C R 1985 J. Appl. Phys. 58 4402
[25] Macdonald D H, Maeckel H, Doshi S, Brendle W, Cuevas A, Williams J S and Conway M J 2003 Appl. Phys. Lett. 82 2987
[1] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[2] Microstructure evolution and passivation quality of hydrogenated amorphous silicon oxide (a-SiOx:H) on <100>- and <111>-orientated c-Si wafers
Jun-Fan Chen(陈俊帆), Sheng-Sheng Zhao(赵生盛), Ling-Ling Yan(延玲玲), Hui-Zhi Ren(任慧志), Can Han(韩灿), De-Kun Zhang(张德坤), Chang-Chun Wei(魏长春), Guang-Cai Wang(王广才), Guo-Fu Hou(侯国付), Ying Zhao(赵颖), Xiao-Dan Zhang(张晓丹). Chin. Phys. B, 2020, 29(3): 038801.
[3] Dependence of the solar cell performance on nanocarbon/Si heterojunctions
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2018, 27(7): 078801.
[4] Detection of finger interruptions in silicon solar cells using photoluminescence imaging
Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德). Chin. Phys. B, 2018, 27(6): 068801.
[5] A compact and high-power silicon-wafer solar strip-cells-array module integrated with an array concentrator
Jie Lin(林洁), Mengxia Chen(陈梦霞), Yongqi Ke(柯永琦), Caiying Ren(任彩莹), Zesheng Xu(徐泽升), Yaoju Zhang(张耀举), Chaolong Fang(方朝龙). Chin. Phys. B, 2018, 27(1): 018802.
[6] Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces
Hadi Bashiri, Mohammad Azim Karami, Shahramm Mohammadnejad. Chin. Phys. B, 2017, 26(10): 108801.
[7] Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide
Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛). Chin. Phys. B, 2017, 26(9): 098103.
[8] Influence of interface states, conduction band offset, and front contact on the performance of a-SiC: H(n)/c-Si(p) heterojunction solar cells
Zhi Qiao(乔治), Jian-Li Ji(冀建利), Yan-Li Zhang(张彦立), Hu Liu(刘虎), Tong-Kai Li(李同锴). Chin. Phys. B, 2017, 26(6): 068802.
[9] Interface states study of intrinsic amorphous silicon for crystalline silicon surface passivation in HIT solar cell
You-Peng Xiao(肖友鹏), Xiu-Qin Wei(魏秀琴), Lang Zhou(周浪). Chin. Phys. B, 2017, 26(4): 048104.
[10] Photocarrier radiometry for noncontact evaluation of space monocrystalline silicon solar cell under low-energy electron irradiation
Liu Jun-Yan (刘俊岩), Song Peng (宋鹏), Wang Fei (王飞), Wang Yang (王扬). Chin. Phys. B, 2015, 24(9): 097801.
[11] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei (王威), Shen Hong-Lie (沈鸿烈), Jin Jia-Le (金佳乐), Li Jin-Ze (李金泽), Ma Yue (马跃). Chin. Phys. B, 2015, 24(5): 056805.
[12] A new kind of superimposing morphology for enhancing the light scattering in thin film silicon solar cells:Combining random and periodic structure
Huang Zhen-Hua (黄振华), Zhang Jian-Jun (张建军), Ni Jian (倪牮), Wang Hao (王昊), Zhao Ying (赵颖). Chin. Phys. B, 2014, 23(8): 084205.
[13] Analysis of each branch current of serial solar cells by using an equivalent circuit model
Yi Shi-Guang (易施光), Zhang Wan-Hui (张万辉), Ai Bin (艾斌), Song Jing-Wei (宋经纬), Shen Hui (沈辉). Chin. Phys. B, 2014, 23(2): 028801.
[14] AlOx prepared by atomic layer deposition for high efficiency-type crystalline silicon solar cell
Qiu Hong-Bo (仇洪波), Li Hui-Qi (李惠琪), Liu Bang-Wu (刘邦武), Zhang Xiang (张祥), Shen Ze-Nan (沈泽南). Chin. Phys. B, 2014, 23(2): 027301.
[15] Influence of annealing temperature on passivation performance of thermal atomic layer deposition Al2O3 films
Zhang Xiang (张祥), Liu Bang-Wu (刘邦武), Zhao Yan (赵彦), Li Chao-Bo (李超波), Xia Yang (夏洋). Chin. Phys. B, 2013, 22(12): 127303.
No Suggested Reading articles found!