Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 030501    DOI: 10.1088/1674-1056/24/3/030501
GENERAL Prev   Next  

Bifurcation behavior and coexisting motions in a time-delayed power system

Ma Mei-Ling (马美玲), Min Fu-Hong (闵富红)
School of Electrical and Automation Engineering, Nanjing 210042, China
Abstract  With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions. With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous “jump” bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincaré maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems.
Keywords:  chaotic oscillation      time delays      bifurcation diagrams      coexisting motions  
Received:  17 September 2014      Revised:  14 October 2014      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51475246 and 51075215), the Natural Science Foundation of Jiangsu Province of China (Grant No. Bk20131402), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grand No. [2012]1707).
Corresponding Authors:  Min Fu-Hong     E-mail:  minfuhong@njnu.edu.cn

Cite this article: 

Ma Mei-Ling (马美玲), Min Fu-Hong (闵富红) Bifurcation behavior and coexisting motions in a time-delayed power system 2015 Chin. Phys. B 24 030501

[1] Lu Q and Sun Y Z 1993 Power System Nonlinear Control (Beijing: Science Press) p. 17
[2] Wei D Q and Luo X S 2009 Europhys. Lett. 86 5008
[3] Qin Y H, Luo X S and Wei D Q 2010 Chin. Phys. B 19 050511
[4] Rajagopalan C, Sauer P W and Pai M A 1989 Proceedings of the 28th Conference on Decision and Control, December 13-15, 1989, Tampa, Florida, USA, p. 332
[5] Yu Y, Jia H, Li P and Su J 2003 Electr. Pow. Syst. Res. 65 187
[6] Betancourt R J, Arroyo J, Barocio E, Vazquez S and Messina A R 2009 North America Power Symposium, October 4-6, 2009, Starkville, MS, USA, p. 1
[7] Deepak K L and Swarup K S 2011 Appl. Soft. Comput. 11 103
[8] Abed E H, Alexandar J C, Wang H, Hamdan A M A and Lee H C 1992 Proceedings of IEEE International Symposium on Circuits and Systems, May 10-13, 1992, San Diego, CA, p. 2509
[9] Cañizares C A 1995 Electr. Pow. & Ener. Syst. 17 61
[10] Ji W and Venkatasubramanian V 1996 Electr. Pow. & Ener. Syst. 18 279
[11] Nayfeh A H, Harb A, Chin C M, Hamdam A M A and Mili L 1998 Electr. Pow. Syst. Res. 47 21
[12] Jing Z, Xu D, Chang Y and Chen L 2003 Electr. Pow. Syst. Res. 25 443
[13] Sarai M A, Claudio R F E and Ricardo B 2013 Electr. Pow. Syst. Res. 101 102
[14] Ahmad M H and Nabil A J 2003 Chaos. Soliton. Fract. 18 1055
[15] Subramanian D P and Devi R P K 2010 Joint International Conference on PEDES & 2010 Power India, December 20-23, 2010, New Delhi, India, p. 1
[16] Zhao H, Ma Y J, Liu S J, Gao S G and Zhong D 2011 Chin. Phys. B 20 120501
[17] Hossein G, Amir H and Azita A 2013 Chin. Phys. B 22 010503
[18] Ni J K, Liu C X and Pang X 2013 Acta Phys. Sin. 19 190507 (in Chinese)
[19] Venkatasubramanian V and Ji W 1999 IEEE Trans. Circ. Syst.-I 46 405
[20] Jia H and Yu X 2008 Power and Energy Society General Meeting, July 20-24, 2008, Pittsburgh, PA, USA, p. 1
[21] Jia H J, Na G Y, Stephen T L and Zhang P 2006 IEEE Mediterranean Electrotechnical Conference, May 16-19, 2006, Benalmádena (Málaga), Spain, p. 1011
[22] Jia H, Yu X, Yu Y and Wang C 2008 Electr. Pow. Syst. Res. 30 16
[23] Jia H, Cao X, Yu Y and Zhang P 2007 Power Engineering Scociety General Meeting, June 24-18, 2007, Tampa, Florida, USA, p. 1
[24] Saffet A 2009 Eur. Trans. Electr. Pow. 19 949
[25] Federico M and Marian A 2012 IEEE. T. Circ. Syst.- I 59 889
[26] Liu Z Y, Jiang Q Y, Xu L Z and Cao Y J 2009 J. Zhejiang U. (Eng. Sci.) 43 1473
[27] Arindam B C, Anil K and Gaurav R 2011 International Conference on Power and Energy Systems, December 22-24, 2011, Chennai, India, p. 1
[28] Leine R I, Vancampen D H and Vandervrande B I 2000 Nonlinear Dyn. 23 105
[29] Feudel U and Greboqi C 1997 Chaos 7 597
[30] Ruiz F R and Pisarchik A N 2009 Phys. Rev. 79 016202
[31] Zhang Y, Kong G and Yu J 2009 Phys. Lett. A 373 1341
[32] Ngonghala C N, Fedudel U and Showalter K 2011 Phys. Rev. 83 056206
[33] Sausedo J M and Pisarchik A N 2011 Phys. Lett. A 375 3677
[34] Li C and Sprott J C 2013 Int. J. Bifurc. Chaos 23 51
[35] Min F H, Ma M L, Zhai W and Wang E R 2014 Acta Phys. Sin. 63 050504 (in Chinese)
[1] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[2] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[3] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[4] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[5] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[6] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[7] Effects of time delays in a mathematical bone model
Li-Fang Wang(王莉芳), Kang Qiu(仇康), Ya Jia(贾亚). Chin. Phys. B, 2017, 26(3): 030503.
[8] Consensus problems of first-order dynamic multi-agent systems with multiple time delays
Ji Liang-Hao (纪良浩), Liao Xiao-Feng (廖晓峰). Chin. Phys. B, 2013, 22(4): 040203.
[9] Synchronization of noise-perturbed optical systems with multiple time delays
Tang Mao-Ning(唐矛宁) . Chin. Phys. B, 2012, 21(2): 020509.
[10] Dynamical behaviors of a system with switches between the Rössler oscillator and Chua circuits
Zhang Chun (张春), Yu Yue (余跃), Han Xiu-Jing (韩修静), Bi Qin-Sheng (毕勤胜). Chin. Phys. B, 2012, 21(10): 100501.
[11] Linear-control-based synchronisation of coexisting attractor networks with time delays
Song Yun-Zhong(宋运忠). Chin. Phys. B, 2010, 19(6): 060513.
No Suggested Reading articles found!