Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100501    DOI: 10.1088/1674-1056/21/10/100501
GENERAL Prev   Next  

Dynamical behaviors of a system with switches between the Rössler oscillator and Chua circuits

Zhang Chun (张春), Yu Yue (余跃), Han Xiu-Jing (韩修静), Bi Qin-Sheng (毕勤胜)
Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
Abstract  The behaviors of a system that alternates between the Rössler oscillator and Chua's circuit is investigated to explore the influence of the switches on the dynamical evolution. Switches related to the state variables are introduced, upon which a typical switching dynamical model is established. Bifurcation sets of the subsystems are derived via analysis of the related equilibrium points, which divide the parameters into several regions corresponding to different types of attractors. The dynamics behave typically in period orbits with the variation of the parameters. The focus/cycle periodic switching phenomenon is explored in detail to present the mechanism of the movement. The period-doubling bifurcation to chaos can be observed via the doubling increase of the turning points related to the switches. Furthermore, period-decreasing sequences have been obtained, which can be explained by the variation of the eigenvalues associated with the equilibrium points of the subsystems.
Keywords:  switching dynamical system      bifurcation mechanism      focus/cycle switching      chaotic oscillation  
Received:  21 March 2012      Revised:  18 April 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 20976075).
Corresponding Authors:  Bi Qin-Sheng     E-mail:  qbi@ujs.edu.cn

Cite this article: 

Zhang Chun (张春), Yu Yue (余跃), Han Xiu-Jing (韩修静), Bi Qin-Sheng (毕勤胜) Dynamical behaviors of a system with switches between the Rössler oscillator and Chua circuits 2012 Chin. Phys. B 21 100501

[1] Bernardona D P, Sperandio M, Garcia V J, Russi J, Canha L N, Abaide A R and Daza E F B 2011 Electr. Pow. Compo. Syst. Res. 81 414
[2] Putyrski M, and Schultz C 2011 Chem. Biol. 18 1126
[3] Kim S C, Kim Y C, Yoon B Y and Kang M 2007 Computer Netw. 51 606
[4] Persis C D, Santis R D and Morse A S 2003 Syst. Control Lett. 50 291
[5] Minkenberg C, Gusat C and Parallel J 2009 Distrib. Comput. 69 680
[6] Peng Y H and Song Y L 2009 Phys. Lett. A 373 1744
[7] Goebel R, Sanfelice R G and Teel A R 2008 Syst. Control Lett. 57 980
[8] Tavazoei M S and Haeri M 2010 Nonlinear Anal. Real. 11 332
[9] Salah J B, Valentin C, Jerbi H and Xua C Z 2011 Syst. Control Lett. 60 967
[10] Bhattacharyya R and Mukhopadhyay B 2010 Nonlinear Anal. Real. 11 3824
[11] Li L L, Zhao J and Dimirovski G M 2011 Nonlinear Anal.: Hybrid Sys. 5 479
[12] Xiang Z R, Sun Y N and Chen Q W 2011 Appl. Math. Comput. 217 9835
[13] Sharan R and Banerjee S 2008 Phys. Lett. A 372 4234
[14] Liu J, Liu X Z and Xie W C 2009 Nonlinear Anal.: Hybrid Sys. 3 441
[15] Chen Z Y, Zhang X F and Bi Q S 2010 Acta Phys. Sin. 59 2327 (in Chinese)
[1] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[2] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[3] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[4] Bursting phenomena as well as the bifurcation mechanism in a coupled BVP oscillator with periodic excitation
Xiaofang Zhang(张晓芳), Lei Wu(吴磊), Qinsheng Bi(毕勤胜). Chin. Phys. B, 2016, 25(7): 070501.
[5] Bifurcation behavior and coexisting motions in a time-delayed power system
Ma Mei-Ling (马美玲), Min Fu-Hong (闵富红). Chin. Phys. B, 2015, 24(3): 030501.
[6] Bifurcation analysis of the logistic map via two periodic impulsive forces
Jiang Hai-Bo (姜海波), Li Tao (李涛), Zeng Xiao-Liang (曾小亮), Zhang Li-Ping (张丽萍). Chin. Phys. B, 2014, 23(1): 010501.
[7] Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode
Zhang Wei-Ya (张玮亚), Li Yong-Li (李永丽), Chang Xiao-Yong (常晓勇), Wang Nan (王楠). Chin. Phys. B, 2013, 22(9): 098401.
[8] Forced bursting and transition mechanism in CO oxidation with three time scales
Li Xiang-Hong (李向红), Bi Qin-Sheng (毕勤胜). Chin. Phys. B, 2013, 22(4): 040504.
[9] Bursting oscillation in CO oxidation with small excitation and the enveloping slow-fast analysis method
Li Xiang-Hong(李向红) and Bi Qin-Sheng(毕勤胜) . Chin. Phys. B, 2012, 21(6): 060505.
[10] Symmetric bursting behaviour in non-smooth Chua's circuit
Ji Ying(季颖) and Bi Qin-Sheng(毕勤胜). Chin. Phys. B, 2010, 19(8): 080510.
No Suggested Reading articles found!