Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 070503    DOI: 10.1088/1674-1056/27/7/070503
GENERAL Prev   Next  

Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system

Jiang-Bin Wang(王江彬)1,2, Chong-Xin Liu(刘崇新)1,2, Yan Wang(王琰)1,2, Guang-Chao Zheng(郑广超)1,2
1 State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;
2 School of Electrical Engineering, Xi'an Jiaotong University
Abstract  Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.
Keywords:  fixed time stability      integral sliding mode control      four-order power system      chaotic oscillation      non-singular chattering-free  
Received:  24 January 2018      Revised:  30 March 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51521065).
Corresponding Authors:  Jiang-Bin Wang     E-mail:

Cite this article: 

Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超) Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system 2018 Chin. Phys. B 27 070503

[1] Rajesh K G and Padiyar K R 1999 Int. J. Electr. Power Energy Syst. 21 375
[2] Jia H J, Yu Y X and Wang C S 2001 Proc. CSEE 21 26 (in Chinese)
[3] Jia H J, Yu Y X and Li P 2002 Proc. CSEE 22 6 (in Chinese)
[4] Jia H J, Yu Y X, Li P and Su J F 2003 Proc. CSEE 23 1 (in Chinese)
[5] Wang B H, Yang C W and Zhang Q 2005 Trans. Chin. Electrotech. Soc. 20 1 (in Chinese)
[6] Dong S Y, Bao H and Wei Z 2010 Proc. CSEE 30 58 (in Chinese)
[7] Zhang W D and Zhang W N 2000 Power Syst. Technol. 24 17 (in Chinese)
[8] Wang B H, Zhang Q and Su R X 2002 J. Nanjing Inst. Technol. 2 8 (in Chinese)
[9] Wang B H, Zhang Q, Yang C W and Yang W 2004 Relay 32 1 (in Chinese)
[10] Lei T F and Yin J S 2015 J. Jiaying Univ. 33 32 (in Chinese)
[11] Song Y Z, Zhao G Z and Qi D L 2006 Proc. CSU-EPSA 18 5 (in Chinese)
[12] Tan W, Li Z P and Zhang M 2010 J. Hunan Univ Sci. Technol. 25 59 (in Chinese)
[13] Wang B H, Zhang Q, Yang C W and Yang W 2003 Electr. Power Autom. Equip. 23 9 (in Chinese)
[14] Zhu Z Y, Liu W T and Cai L Y 2009 Ship Eng. 31 36 (in Chinese)
[15] Yuan L, Wu H S and Tu J J 2010 Electr. Power Autom. Equip. 30 82 (in Chinese)
[16] Chiang H D, Liu C W, Varaiya P P, Wu F F and Lauby M G 1993 IEEE Trans. Power Syst. 8 1407
[17] Dobson I, Chiang H D, Thorp J S and Ahmed L F 1988 Proc. 27 th Conference on Decision and Control December 1988 Austin, USA, p. 2104
[18] Wang H O, Abed E H and Hamdan A M A 1994 IEEE Trans. Circuits Syst. -I:Fundam. Theory Appl. 41 294
[19] Kumar D and Swarup K S 2011 Soft. Comput. 11 103
[20] Chiang H D, Dobson I and Thomas R J 1990 IEEE Trans. Power Syst. 5 601
[21] Dobson I and Chiang H D 1989 Syst. Control Lett. 13 253
[22] Subramanian D P, Devi R P K and Saravanaselvan R 2011 Int. J. Electr. Power Energy Syst. 33 1194
[23] Xie H 2001 J. UEST Chin. 30 383
[24] Ding S H and Li S H 2011 Control Deci. 26 161
[25] Ni J K, Liu C X, Liu K and Liu L 2014 Chin. Phys. B 23 100504
[26] Ni J K, Liu C X and Pang X 2013 Acta Phys. Sin. 62 190507 (in Chinese)
[27] Li H J and Cai Y L 2017 IET Contr. Theory Appl. 11 766
[28] Zuo Z Y 2015 IET Contr. Theory Appl. 9 545
[29] Zuo Z Y and Tie L 2014 Int. J. Syst. Sci. 47 1366
[30] Liu X W, Lu W L and Chen T P 2016 Proc. 35th Chinese Control Conference July 27-29 Chengdu, China, p. 7985
[31] Ni J K, Liu L, Liu C X and Hu X Y 2017 Nonlinear Dyn. 89 2065
[32] Ni J K, Liu L, Liu C X, Hu X Y and Li S L 2017 IEEE Trans. Circuits Syst. Ⅱ-Express Briefs 64 151
[33] Saad M S, Hassouneh M A, Abed E H and Edris A 2005 Am. Control Conf. June 8-10 2005 Portland, USA, p. 4375
[34] Aghababa M P 2018 IEEE Trans. Syst. Man Cybern. -Syst. p. 1
[35] Liu J K 2015 Sliding Mode Control Design MATLAB Simulation-Basic Theory Design Method 3rd edn. (Beijing:Tsinghua University Press) pp. 483-491 (in Chinese)
[1] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[2] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[3] Bifurcation behavior and coexisting motions in a time-delayed power system
Ma Mei-Ling (马美玲), Min Fu-Hong (闵富红). Chin. Phys. B, 2015, 24(3): 030501.
[4] Dynamical behaviors of a system with switches between the Rössler oscillator and Chua circuits
Zhang Chun (张春), Yu Yue (余跃), Han Xiu-Jing (韩修静), Bi Qin-Sheng (毕勤胜). Chin. Phys. B, 2012, 21(10): 100501.
[5] Integral sliding mode control for a class of nonlinear neutral systems with time-varying delays
Lou Xu-Yang (楼旭阳), Cui Bao-Tong (崔宝同). Chin. Phys. B, 2008, 17(12): 4434-4439.
No Suggested Reading articles found!