Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 030401    DOI: 10.1088/1674-1056/24/3/030401
GENERAL Prev   Next  

Influence of the environmental noise on determining the period of a torsion pendulum

Luo Jie (罗杰)a, Tian Yuan (田苑)a, Shao Cheng-Gang (邵成刚)b, Wang Dian-Hong (王典洪)a
a Faculty of Mechanical and Electronic Information, China University of Geosciences, Wuhan 430074, China;
b School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  

The environmental noise can restrict the accuracy of period estimation since the torsion pendulum is sensitive to weak forces. Two typical models for the environmental noise are proposed to make an evaluation. Generally, the stationary environmental noise is modeled as a white noise, and contributes to the period uncertainty as a function of the initial amplitude, the quality factor, the variance of noise and the time length. As to a sudden sharp disturbance acting on the pendulum, a narrow impulse model is constructed. It results in a sharp jump in the phase difference, which can be excluded with the 3σ criterion for a correction. An experimental data analysis for the measurement of the gravitational constant G with the time-of-swing method shows that the period uncertainty due to the environmental noise is about one and a half times the fundamental thermal noise limit. Though this result is dependent on the ambient environment, the analysis is instructive to improve the measurement accuracy of experiments.

Keywords:  period estimation      environmental noise      thermal noise limit      uncertainty  
Received:  18 September 2014      Revised:  12 October 2014      Accepted manuscript online: 
PACS:  04.80.Cc (Experimental tests of gravitational theories)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2010CB832800), the National Natural Science Foundation of China (Grant Nos. 11175160 and 11275075), and the Natural Science Foundation of Key Projects of Hubei Province, China (Grant No. 2013CFA045).

Corresponding Authors:  Shao Cheng-Gang     E-mail:  cgshao@mail.hust.edu.cn

Cite this article: 

Luo Jie (罗杰), Tian Yuan (田苑), Shao Cheng-Gang (邵成刚), Wang Dian-Hong (王典洪) Influence of the environmental noise on determining the period of a torsion pendulum 2015 Chin. Phys. B 24 030401

[1] Gillies G T and Ritter R C 1993 Rev. Sci. Instrum. 64 283
[2] Heyl P R 1930 J. Res. Natl. Bur. Stand. 5 1243
[3] Heyl P R and Chrzanovski P 1942 J. Res. Natl. Bur. Stand. 29 1
[4] Luther G G and Towler W R 1982 Phys. Rev. Lett. 48 121
[5] Karagioz O V and Izmailov V P 1996 Measurement Techniques 39 979
[6] Bagley C H and Luther G G 1997 Phys. Rev. Lett. 78 3047
[7] Luo J, Hu Z K, Fu X H and Fan S H 1998 Phys. Rev. D 59 042001
[8] Newman R D and Bantel M K 1999 Meas. Sci. Technol. 10 445
[9] Saulson P R 1990 Phys. Rev. D 42 2437
[10] González G I and Saulson P R 1995 Phys. Lett. A 201 12
[11] Adelberger E G, Gundlach J H, Heckel B R, Hoedl S and Schlamminger S 2009 Progress in Particle and Nuclear Physics 62 102
[12] Chen Y T and Cook A 1990 Class. Quantum Grav. 7 1225
[13] Luo J, Shao C G, Tian Y and Wang D H 2013 Phys. Lett. A 377 1397
[14] Luo J, Shao C G and Wang D H 2009 Class. Quantum Grav. 26 195005
[15] Li Q, Liu L X, Tu L C, Shao C G and Luo J 2010 Chin. Phys. Lett. 27 070401
[16] Luo J, Shao C G, Wang D H and Tian Y 2012 Chin. Phys. Lett. 29 060401
[17] Fan X D, Liu Q, Liu L X, Milyukov V and Luo J 2008 Phys. Lett. A 372 547
[18] Milyukov V K, Luo J, Tao C and Mironov A P 2008 Gravitation and Cosmology 14 368
[19] Milyukov V 2010 9th Asia-Pacific International Conference on Gravitation and Astrophysics, June 29-July 02, 2009, Wuhan, China, pp. 3-15
[20] Goldblum C E, Ritter R C and Gillies G T 1988 Rev. Sci. Instrum. 59 778
[21] Snyder J J 1980 Appl. Opt. 19 1224
[22] Hu Z K and Luo J 1999 Rev. Sci. Instrum. 70 4412
[23] Shao C G, Luan E J and Luo J 2003 Rev. Sci. Instrum. 74 2849
[24] Tian Y L, Tu Y and Shao C G 2004 Rev. Sci. Instrum. 75 1971
[25] Luo J and Wang D H 2008 Rev. Sci. Instrum. 79 094705
[26] Tu L C, Li Q, Wang Q L, Shao C G, Yang S Q, Liu L X, Liu Q and Luo J 2010 Phys. Rev. D 82 022001
[27] Landau L D and Lifshitz E M 1980 Statistical Physics (Part 1) (3rd edn.) (Oxford: Pergamon)
[28] Hu Z K, Luo J and Hsu H 1999 Phys. Lett. A 264 112
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[3] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[4] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[5] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[6] Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock
Jin-Bo Yuan(袁金波), Jian Cao(曹健), Kai-Feng Cui(崔凯枫), Dao-Xin Liu(刘道信), Yi Yuan(袁易), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2021, 30(7): 070305.
[7] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[8] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[9] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[10] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[11] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
[12] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[13] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[14] Reduction of entropy uncertainty for qutrit system under non-Markov noisy environment
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(4): 040306.
[15] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
No Suggested Reading articles found!