Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 025203    DOI: 10.1088/1674-1056/24/2/025203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

Chen Zhao-Quan (陈兆权)a b, Yin Zhi-Xiang (殷志祥)a, Xia Guang-Qing (夏广庆)c, Hong Ling-Li (洪伶俐)a, Hu Ye-Lin (胡业林)a, Liu Ming-Hai (刘明海)d, Hu Xi-Wei (胡希伟)d, A. A. Kudryavtsevb
a College of Electrical & Information Engineering, Anhui University of Science and Technology, Huainan 232001, China;
b Faculty of Physics, St. Petersburg State University, St. Petersburg, 198504, Russia;
c State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
d State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications.
Keywords:  pulsed microwave discharge      surface plasmon polaritons      atmospheric argon cold plasma jet      distinctive plasma plume patterns  
Received:  03 August 2014      Revised:  27 August 2014      Accepted manuscript online: 
PACS:  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
  52.40.Fd (Plasma interactions with antennas; plasma-filled waveguides)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).
Corresponding Authors:  Chen Zhao-Quan, Yin Zhi-Xiang     E-mail:  zqchen@aust.edu.cn;zxyin66@163.com

Cite this article: 

Chen Zhao-Quan (陈兆权), Yin Zhi-Xiang (殷志祥), Xia Guang-Qing (夏广庆), Hong Ling-Li (洪伶俐), Hu Ye-Lin (胡业林), Liu Ming-Hai (刘明海), Hu Xi-Wei (胡希伟), A. A. Kudryavtsev Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons 2015 Chin. Phys. B 24 025203

[1] Lee H W, Kang S K, Won I H, Kim H Y, Kwon H C, Sim J Y and Lee J K 2013 Phys. Plasmas 20 123506
[2] Wu C, Hoskinson A R and Hopwood J 2011 Plasma Sources Sci. Technol. 20 045022
[3] Chen Z, Xia G, Zhou Q, Hu Y, Zheng X, Zheng Z, Hong L, Li P, Huang Y and Liu M 2012 Rev. Sci. Instrum. 83 084701
[4] Lee H Wk, Lee H W, Kang S K, Kim H Y, Won I H, Jeon S M and Lee J K 2013 Plasma Sources Sci. Technol. 22 055008
[5] Hoskinson A R and Hopwood J 2012 Plasma Sources Sci. Technol. 21 052002
[6] Kim J and Terashima K 2005 Appl. Phys. Lett. 86 191504
[7] Zhang Z and Hopwood J 2009 Appl. Phys. Lett. 95 161502
[8] Kim J, Katsurai M, Kim D and Ohsaki H 2008 Appl. Phys. Lett. 93 191505
[9] Xue J, Urdahl R S and Cooley J E 2012 Appl. Phys. Lett. 100 064102
[10] Schlüter H and Shivarova A 2007 Phys. Rep. 443 121
[11] Choi J, Iza F, Do H J, Lee J K and Cho M H 2009 Plasma Sources Sci. Technol. 18 025029
[12] Chen Z, Liu M, Xia G and Huang Y 2012 IEEE Trans. Plasma Sci. 40 2861
[13] Kang S K, Seo Y S, Lee H W, Aman-ur-Rehman, Kim G C and Lee J K 2011 J. Phys. D: Appl. Phys. 44 435201
[14] Xue J and Hopwood J 2009 IEEE Trans. Plasma Sci. 37 816
[15] Hnilica J, Kudrle V, Vasina P, Schafer J and Aubrecht V 2012 J. Phys. D: Appl. Phys. 45 055201
[16] Esakov I I, Grachev L P, Khodataev K V, Bychkov V L and Wie D M V 2007 IEEE Trans. Plasma Sci. 35 1658
[17] Takamura S, Amano S, Kurata T, Kasada H, Yamamoto J, Razzak M A, Kushida G, Ohno N and Kando M 2011 J. Appl. Phys. 110 043301
[18] Munoz J and Calzada M D 2008 J. Phys. D: Appl. Phys. 41 135203
[19] Hubner S, Palomares J M, Carbone E A D and van der Mullen J J A 2012 J. Phys. D: Appl. Phys. 45 055203
[20] Monfared S K, Hoskinson A R and Hopwood J 2013 J. Phys. D: Appl. Phys. 46 425201
[21] Carbone E and Nijdam S 2014 Plasma Sources Sci. Technol. 23 012001
[22] Lu X, Wu S, Chu P K, Liu D and Pan Y 2011 Plasma Sources Sci. Technol. 20 065009
[23] Chen Z, Xia G, Li P, Hong L, Hu Y, Zheng X, Wang Y, Huang Y, Zhu L and Liu M 2013 IEEE Trans. Plasma Sci. 41 1658
[24] Chen Z, Zheng X, Xia G, Li P, Hu Y, Du Z, Zhu L, Liu M, Chen M and Hu X 2014 Plasma Sci. Technol. 16 329
[25] Bliokh Y P, Felsteiner J and Slutsker Y Z 2005 Phys. Rev. Lett. 95 165003
[26] Wang L, Cao J, Wang Y, Niu T, Liu L and Lv Y 2008 Chin. Phys. B 17 2257
[27] Iza F and Hopwood J 2005 Plasma Sources Sci. Technol. 14 397
[28] Chen Z, Liu M, Tang L, Lv J, Wen Y and Hu X 2009 J. Appl. Phys. 106 063304
[29] Agranovich V M and Mills D L 1982 Surface Polaritions: Electromagnetic Waves at Surfaces and Interfaces (Netherlands: Elsevier), Chaps. 1 and 9
[30] Chen Z, Liu M, Zhou Q, Hu Y, Yang A, Zhu L and Hu X 2011 Chin. Phys. Lett. 28 045201
[31] Chen Z, Ye Q, Xia G, Hong L, Hu Y, Zheng X, Li P, Zhou Q, Hu X and Liu M 2013 Phys. Plasmas 20 033502
[32] Xu X, Liu F, Zhou Q, Liang B, Liang Y and Liang R 2008 Appl. Phys. Lett. 92 011501
[33] Chen Z, Liu M, Tang L, Hu P and Hu X 2009 J. Appl. Phys. 106 013314
[34] WalshJ L, Iza F, Janson N B, Law V J and Kong M G 2010 J. Phys. D: Appl. Phys. 43 075201
[35] Boeuf J P, Chaudhury B and Zhu G 2010 Phys. Rev. Lett. 104 015002
[36] Zhu G, Boeuf J P and Li J 2012 Acta Phys. Sin. 61 235202 (in Chinese)
[37] Chen Z, Hu D, Liu M, Xia G, Zheng X, Hu Y, Ye Q, Chen M, Zhu L and Hu X 2014 Chin. Phys. B 23 035202
[38] Zheng Z, Chen Z, Liu P, Zhou Q, Chen M, Wang G, Zhou Q, Fulcheri L and Liu M 2014 IEEE Trans. Plasma Sci. 42 911
[39] Zhou Q, Dong Z and Chen J 2011 Acta Phys. Sin. 60 125202 (in Chinese)
[40] Yang J, Shi F, Yang T and Meng Z 2010 Acta Phys. Sin. 59 8701 (in Chinese)
[41] Chen Z, Yin Z, Cheng M, Liu M, Xu G, Hu Y, Xia G, Song X, Jia X and Hu X 2014 Acta Phys. Sin. 63 095205 (in Chinese)
[42] Zhu L, Chen Z, Yin Z, Wang G, Xia G, Hu Y, Zheng X, Zhou M, Chen M and Liu M 2014 Chin. Phys. Lett. 31 035203
[43] Chen Z, Xia G, Liu M, Zheng X, Hu Y, Li P, Xu G, Hong L, Sheng H and Hu X 2013 Acta Phys. Sin. 62 195204 (in Chinese)
[1] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[2] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[3] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[4] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[5] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[6] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[7] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[8] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[9] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[10] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[11] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[12] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[13] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[14] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[15] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
No Suggested Reading articles found!