Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024302    DOI: 10.1088/1674-1056/24/2/024302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Study of acoustic bubble cluster dynamics using a lattice Boltzmann model

Mahdi Daemia, Mohammad Taeibi-Rahnia, Hamidreza Massahb
a Aerospace Engineering Department, Sharif University of Technology, Tehran, Iran;
b Physics Department, Ferdowsi University, Mashhad, Iran
Abstract  The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor. A long list of complex phenomena underlies the physics of this problem. In the past decades, the lattice Boltzmann method has emerged as a promising tool to address such complexities. In this regard, we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field. A problem as a benchmark is studied to check the consistency and applicability of the model. The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics, as well as the screening effect on an acoustic multi-bubble medium. It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.
Keywords:  multiphase lattice Boltzmann model      acoustic field      multi-bubble      bubble cluster dynamics      cavitation  
Received:  03 June 2014      Revised:  17 August 2014      Accepted manuscript online: 
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  47.55.dp (Cavitation and boiling)  
Corresponding Authors:  Mahdi Daemi     E-mail:  mdaemi@ae.sharif.edu

Cite this article: 

Mahdi Daemi, Mohammad Taeibi-Rahni, Hamidreza Massah Study of acoustic bubble cluster dynamics using a lattice Boltzmann model 2015 Chin. Phys. B 24 024302

[1] van Wijngaarden L 1968 J. Fluid Mech. 33 465
[2] Brennen C E 2014 Cavitation and Bubble Dynamics (Proof stage) (New York: Cambridge University Press)
[3] Brennen C E 2011 "An Introduction to Cavitation Fundamentals", Invited Paper, WIMRC Forum 2011, Warwick University, UK
[4] Sinden D, Stride E and Saffari N 2012 J. Phys.: Conference Series 353 012008
[5] Lahey R T, Taleyarkhan R P and Nigmatulin R I 2007 Nuclear Engineering and Desgin 237 1571
[6] Nigmatulin R I 1991 Dynamics of Multiphase Media, Vol. 1 (New York: Hemisphere)
[7] Brenner M P 2002 Rev. Mod. Phys. 74 425
[8] Nasibullaeva E S and Akhatov I S 2005 Acoust. Phys. 51 705
[9] Seo J H, Lele S K and Tryggvason G 2010 Phys. Fluids 22 063302
[10] Kedrinskii V K 2005 Hydrodynamics of Explosion (Berlin: Springer)
[11] Yoon S W, Crum L A, Prosperetti A and Lu N Q 1991 J. Acoust. Soc. Am. 89 700
[12] Bass A, Putterman S, Merriman B and Ruuth S J 2008 Comput. Phys. 227 2118
[13] Chen H, Li S C, Zou Z G and Li S 2008 J. Hydrody. 20 689
[14] Wang C H and Cheng J C 2013 Chin. Phys. B 22 014304
[15] Matsumoto Y and Yoshizawa S 2005 Int. J. Numer. Methods Fluids 47 591
[16] Shagapov V S, Gimaltdinov I K and Yudin A V
[17] Hu J, Lin S Y, Wang C H and Li J 2013 Acta Phys. Sin. 62 134303 (in Chinese)
[18] Wang Y, Lin S Y, Mo R Y and Zhang X L 2013 Acta Phys. Sin. 62 134304 (in Chinese)
[19] Chen H, Goldhirsch I and Orszag S A 2008 J. Sci. Comput. 34 87
[20] Chen H, Teixeira C and Molvig K 1997 Int. J. Mod. Phys. C 8 675
[21] Qian Y, d'Humieres D and Lallemand P 1992 Europhys. Lett. 17 479
[22] Mishra S K, Deymier P A, Muralidharan K, Frantziskonis G and Pannala S 2010 Ultrasonics Sonochemistry 17 258
[23] Biferale L, Mantovani F, Pivanti M, Pozzati F, Sbragaglia M and Scagliarini A 2011 Proc. Comput. Sci. 4 994
[24] Körner C, Pohl T, Rüde U, Thürey N and Zeiser T 2006 Parallel Lattice Boltzmann Methods for CFD Applications, in Numerical Solution of Partial Differential Equations on Parallel Computers 2006 (Berlin: Springer) p. 439
[25] Alapati S, Kang S and Suh Y K 2009 J. Mech. Sci. Technol. 23 2492
[26] He X and Luo L S 1997 Phys. Rev. E 56 6811
[27] He X and Luo L S 1997 Phys. Rev. E 55 R6333
[28] Nie X B, Shan X and Chen H 2008 Europhys. Lett. 81 34005
[29] Daemi M, Taeibi-Rahni M and Massah H 2014 Journal of Acoustical Engineering Society of Iran, Accepted for Publication, 2 (in Persian)
[30] Yuan P and Schaefer L 2006 Phys. Fluids 18 042101
[31] Sukop M C and Thorne D T 2006 Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Berlin, Heidelberg: Springer-Verlag)
[32] Massah H R 2014 "Energy Dissipation Mechanisim in Muli-bubble Dynamics" (Ph. D. Dissertation) (Ferdowsi University) (in Persian)
[33] Nigmatulin R I, Akhatov I S, Vakhitova N K and Lahey R T 2000 J. Fluid Mech. 414 47
[34] Nigmatulin R I, Akhatov I S, Topolnikov A S, Bolotnova R K, Vakhitova N K, Lahey R T and Taleyarkhan R P 2005 Phys. Fluids 17 107106
[35] Brennen C E 1995 Cavitation and Bubble Dynamics (New York: Oxford University Press)
[1] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[2] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
[3] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[4] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[5] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[6] Theoretical estimation of sonochemical yield in bubble cluster in acoustic field
Zhuang-Zhi Shen(沈壮志). Chin. Phys. B, 2020, 29(1): 014304.
[7] Multi-bubble motion behavior of electric field based on phase field model
Chang-Sheng Zhu(朱昶胜), Dan Han(韩丹), Li Feng(冯力), Sheng Xu(徐升). Chin. Phys. B, 2019, 28(3): 034701.
[8] Simulation of acoustic fields emitted by ultrasonic phased array in austenitic steel weld
Zhong-Cun Guo(郭忠存), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2019, 28(11): 114302.
[9] Theoretical prediction of the yield of strong oxides under acoustic cavitation
Jing Sun(孙晶), Zhuangzhi Shen(沈壮志), Runyang Mo(莫润阳). Chin. Phys. B, 2019, 28(1): 014301.
[10] A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2017, 26(8): 084701.
[11] Impact of cavitation on lesion formation induced by high intensity focused ultrasound
Pengfei Fan(范鹏飞), Jie Yu(于洁), Xin Yang(杨鑫), Juan Tu(屠娟), Xiasheng Guo(郭霞生), Pintong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2017, 26(5): 054301.
[12] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[13] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[14] Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications
Xu-Dong Teng(滕旭东), Xia-Sheng Guo(郭霞生), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2016, 25(12): 124308.
[15] A three-dimensional coupled-mode model for the acoustic field in a two-dimensional waveguide with perfectly reflecting boundaries
Wen-Yu Luo(骆文于), Xiao-Lin Yu(于晓林), Xue-Feng Yang(杨雪峰), Ze-Zhong Zhang(张泽众), Ren-He Zhang(张仁和). Chin. Phys. B, 2016, 25(12): 124309.
No Suggested Reading articles found!