Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020502    DOI: 10.1088/1674-1056/24/2/020502
GENERAL Prev   Next  

Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure

Jiang Hai-Bo (姜海波)a, Zhang Li-Ping (张丽萍)a, Yu Jian-Jiang (于建江)b
a School of Mathematics, Yancheng Teachers University, Yancheng 224002, China;
b School of Information Science and Technology, Yancheng Teachers University, Yancheng 224002, China
Abstract  Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics. This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupled by three Duffing oscillators in a ring structure. By constructing a proper Poincaré map of the non-smooth system, an analytical expression of the Jacobian matrix of Poincaré map is given. Two-parameter Hopf bifurcation sets are obtained by combining the shooting method and the Runge-Kutta method. When the period is fixed and the coupling strength changes, the system undergoes stable, periodic, quasi-periodic, and hyper-chaotic solutions, etc. Floquet theory is used to study the stability of the periodic solutions of the system and their bifurcations.
Keywords:  impulsively coupled oscillators      bifurcation      periodic solutions      Floquet theory  
Received:  18 June 2014      Revised:  10 September 2014      Accepted manuscript online: 
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11402224, 11202180, 61273106, and 11171290), the Qing Lan Project of the Jiangsu Higher Educational Institutions of China, and the Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and Presidents.
Corresponding Authors:  Jiang Hai-Bo     E-mail:  yctcjhb@gmail.com

Cite this article: 

Jiang Hai-Bo (姜海波), Zhang Li-Ping (张丽萍), Yu Jian-Jiang (于建江) Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure 2015 Chin. Phys. B 24 020502

[1] Kuramoto Y 1984 Chemical Oscillations, Wave, and Turbulence (Berlin: Springer)
[2] Bi Q S 2007 Phys. Lett. A 369 418
[3] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Science (Cambridge: Cambridge University Press)
[4] Strogatz S H 2000 Physica D 143 1
[5] Fotsin H B and Woafo P 2005 Chaos, Solitons and Fractals 24 1363
[6] Zhou J, Cheng X H, Xiang L and Zhang Y C 2007 Chaos, Solitons and Fractals 33 607
[7] Wang Q Y and Lu Q S 2010 Int. J. Non-Linear Mech. 45 640
[8] Rene Y 2006 Physica A 366 187
[9] Barrón M A and Sen M 2009 Nonlinear Dyn. 56 357
[10] Barron M A, Sen M and Corona E 2008 Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering (Berlin: Springer Netherlands) 346
[11] Perlikowski P, Yanchuk S, Wolfrum M, Stefanski A, Mosiolek P and Kapitaniak T 2010 Chaos 20 013111
[12] Mirollo R M and Strogatz S H 1990 SIAM J. Appl. Math. 50 1645
[13] Nakano H and Saito T 2004 IEEE Trans. Neural Networks 15 1018
[14] Han X P, Lu J A and Wu X Q 2008 Int. J. Bifur. Chaos 18 1539
[15] Yang M, Wang Y W, Xiao J W and Wang H O 2010 Nonlinear Anal. Real World Appl. 11 3008
[16] Jiang H B and Bi Q S 2012 Nonlinear Dyn. 67 781
[17] Jiang H B, Yu J J and Zhou C G 2011 Int. J. Systems Sci. 42 967
[18] Jiang H B and Bi Q S 2010 Phys. Lett. A 374 2723
[19] Jiang H B, Bi Q S and Zheng S 2012 Commun. Nonlinear Sci. Numer. Simul. 17 378
[20] Zhou J, Wu Q J and Xiang L 2012 Nonlinear Dyn. 69 1393
[21] Kitajima H and Kawakami H 2001 IEEE International Symposium on Circuit and Systems (ISCAS2001), May 6-9, 2001, Sydney, NSW, Vol. 2, p. 285
[22] Lenci S and Rega G 2000 Chaos, Solitona and Fractals 11 2453
[23] Zhang S W, Tan D J and Chen L S 2006 Chaos, Solitons and Fractals 29 474
[24] Georgescu P, Zhang H and Chen L S 2008 Appl. Math. Comput. 202 675
[25] Jiang G R and Yang Q G 2008 Chin. Phys. B 17 4114
[26] Jiang G R, Xu B G and Yang Q G 2009 Chin. Phys. B 18 5235
[27] Qian L N, Lu Q S, Meng Q G and Feng Z S 2010 J. Math. Anal. Appl. 363 345
[28] Jiang H B, Zhang L P, Chen Z Y and Bi Q S 2012 Acta Phys. Sin. 61 080505 (in Chinese)
[29] Jiang H B, Li T, Zeng X L and Zhang L P 2013 Acta Phys. Sin. 62 120508 (in Chinese)
[30] Jiang H B, Li T, Zeng X L and Zhang L P 2014 Chin. Phys. B 23 010501
[31] Liu F, Guan Z H and Wang H O 2010 Nonlinear Anal. Real World Appl. 11 1491
[32] Jin L, Lu Q S and Twizell E H 2006 J. Sound Vibration 298 1019
[33] Dankowicz H and Schilder F 2011 J. Comput. Nonlinear Dyn. 6 031003
[34] Zhang Y X and Luo G W 2013 J. Sound Vibration 332 5462
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[6] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[7] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[8] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[9] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[10] Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军). Chin. Phys. B, 2021, 30(12): 120510.
[11] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[12] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[13] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[14] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
[15] Control of firing activities in thermosensitive neuron by activating excitatory autapse
Ying Xu(徐莹) and Jun Ma(马军). Chin. Phys. B, 2021, 30(10): 100501.
No Suggested Reading articles found!