Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020501    DOI: 10.1088/1674-1056/24/2/020501
GENERAL Prev   Next  

Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation

Wang Rui (王蕊)a, Sun Hui (孙辉)b, Wang Jie-Zhi (王杰智)c, Wang Lu (王鲁)d, Wang Yan-Chao (王晏超)e
a Tianjin Key Laboratory for Civil Aircraft Airworthiness and Maintenance, Department of Electrical Engineering, College of Aeronautical Automation, Civil Aviation University of China, Tianjin 300300, China;
b Department of Electrical Engineering, College of Aeronautical Automation, Civil Aviation University of China, Tianjin 300300, China;
c College of Science, Civil Aviation University of China, Tianjin 300300, China;
d Shandong GUOQIANG Hardware Technology Co., Ltd, Leling 253600, China;
e China Eastern Airlines Corporation Limited, Shanghai 200335, China
Abstract  Modularized circuit designs for chaotic systems are introduced in this paper. Especially, a typical improved modularized design strategy is proposed and applied to a new hyper-chaotic system circuit implementation. In this paper, the detailed design procedures are described. Multisim simulations and physical experiments are conducted, and the simulation results are compared with Matlab simulation results for different system parameter pairs. These results are consistent with each other and they verify the existence of the hyper-chaotic attractor for this new hyper-chaotic system.
Keywords:  modularized circuit design      hyper-chaotic systems      Multisim      uniform compression transformation  
Received:  22 September 2014      Revised:  13 November 2014      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61403395), the Natural Science Foundation of Tianjin, China (Grant No. 13JCYBJC39000), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China, the Fund from the Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation of China (Grant No. 104003020106), the National Basic Research Program of China (Grant No. 2014CB744904), and the Fund for the Scholars of Civil Aviation University of China (Grant No. 2012QD21x).
Corresponding Authors:  Sun Hui     E-mail:  h-sun@cauc.edu.cn

Cite this article: 

Wang Rui (王蕊), Sun Hui (孙辉), Wang Jie-Zhi (王杰智), Wang Lu (王鲁), Wang Yan-Chao (王晏超) Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation 2015 Chin. Phys. B 24 020501

[1] Feki M 2003 Chaos, Solitions & Fractals 18 141
[2] Zhang X D, Liu X D, Zheng Y and Liu C 2013 Chin. Phys. B 22 030509
[3] Li X, Liao X and Wong K W 2005 Chaos, Solitions and Fractals 23 183
[4] Uyaroglu Y and Pehlivan I 2010 Computers and Electrical Engineering 39 1093
[5] Huang J W, Feng J C and Lü S X 2014 Acta Phys. Sin 63 050502 (in Chinese)
[6] Obregón-Pulido G, Torres-González A, Cárdenas-Rodríguez R and Solís-Perales G 2014 Mathematical Problems in Engineering 78 2629
[7] Qi G Y, Wyk M A and Chen G R 2009 Chaos, Solitons and Fractals 40 2544
[8] Xue W, Qi G Y, Mu J J, Jia H Y and Guo Y L 2013 Chin. Phys. B 22 080504
[9] Ai X X, Sun K H, He S B and Wang H H 2014 Acta Phys. Sin. 63 120511 (in Chinese)
[10] Li X T and Yin M H 2014 Nonlinear Dynamics 77 61
[11] Yin S H and Wang J C 2014 Jiangxi Science 32 284 (in Chinese)
[12] Yu S M 2011 Chaotic Systems and Choatic Circuits: Princile, Design and Its Application in Communications (Xi'an: Xidian University Press) pp. 293-312
[13] Cang S J, Chen Z Q and Yuan Z Z 2008 Acta Phys. Sin. 57 1493 (in Chinese)
[14] Jia H Y, Chen Z Q and Yuan Z Z 2009 Acta Phys. Sin. 58 4496 (in Chinese)
[15] Xue W, Guo Y L and Chen Z Q 2009 Acta Phys. Sin. 58 8146 (in Chinese)
[16] Wang F Z, Qi G Y, Chen Z Q, Zhang Y H and Yuan Z Z 2006 Acta Phys. Sin. 55 4005 (in Chinese)
[17] Sun K H, Wang Y L and Zhu C X 2013 J. Cent. South Univ. 20 663
[18] Zhang C X and Yu S M 2009 Chin. Phys. B 18 119
[19] Yu S M, Lü J H and Chen G R 2007 Int. J. Bifur. Chaos 17 1785
[20] Yu S M, Tang K S, Lü J H and Chen G R 2008 IEEE Int. Sym. Circ. Sys. 768
[21] Yu S M, Tang K S, Lü J H and Chen G R 2008 Int. J. Circ. Theor. Appl.
[22] Yu S M, Tang K S, Lü J H and Chen G R 2010 Int. J. Bifur. Chaos 20 29
[23] Yu S M and Tang K S 2009 Chaos, Solitons and Fractals 41 1740
[24] Qi G Y, Chen G R, van Wyk M A, van Wyk B J and Zhang Y 2008 Chaos, Solitions and Fractals 38 705
[25] Wang J Z 2014 Tech. Rep. CAUC Math. Dept.
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!