Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120201    DOI: 10.1088/1674-1056/24/12/120201
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics   Next  

Accurate treatments of electrostatics for computer simulations of biological systems: A brief survey of developments and existing problems

Yi Sha-Sha (衣沙沙)a b, Pan Cong (潘聪)a b, Hu Zhong-Han (胡中汉)a b
a State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China;
b Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China
Abstract  

Modern computer simulations of biological systems often involve an explicit treatment of the complex interactions among a large number of molecules. While it is straightforward to compute the short-ranged Van der Waals interaction in classical molecular dynamics simulations, it has been a long-lasting issue to develop accurate methods for the long-ranged Coulomb interaction. In this short review, we discuss three types of methodologies for the accurate treatment of electrostatics in simulations of explicit molecules: truncation-type methods, Ewald-type methods, and mean-field-type methods. Throughout the discussion, we brief the formulations and developments of these methods, emphasize the intrinsic connections among the three types of methods, and focus on the existing problems which are often associated with the boundary conditions of electrostatics. This brief survey is summarized with a short perspective on future trends along the method developments and applications in the field of biological simulations.

Keywords:  Ewald sum      local molecular field theory      symmetry-preserving mean field theory  
Received:  07 May 2015      Revised:  01 July 2015      Accepted manuscript online: 
PACS:  02.70.-c (Computational techniques; simulations)  
  05.20.-y (Classical statistical mechanics)  
  47.11.Mn (Molecular dynamics methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 91127015 and 21522304) and the Open Project from the State Key Laboratory of Theoretical Physics, and the Innovation Project from the State Key Laboratory of Supramolecular Structure and Materials.

Corresponding Authors:  Hu Zhong-Han     E-mail:  zhonghanhu@jlu.edu.cn

Cite this article: 

Yi Sha-Sha (衣沙沙), Pan Cong (潘聪), Hu Zhong-Han (胡中汉) Accurate treatments of electrostatics for computer simulations of biological systems: A brief survey of developments and existing problems 2015 Chin. Phys. B 24 120201

[1] Brooks B R, Brooks C L, Mackerell A D, et al. 2009 J. Comput. Chem. 30 1545
[2] Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M, Onufriev A, Simmerling C, Wang B and Woods R J 2005 J. Comput. Chem. 26 1668
[3] Christen M, Hnenberger P H, Bakowies D, et al. 2005 J. Comput. Chem. 26 1719
[4] Pronk S, Pll S, Schulz R, et al. 2013 Bioinformatics 29 845
[5] Plimpton S 1995 J. Comput. Phys. 117 1
[6] Smith W and Todorov I T 2006 Molecular Simulation 32 935
[7] Bowers K, Chow E, Xu H, et al. 2006 Proceedings of the ACM/IEEE (2006), pp. 43-43
[8] Mackerell A D, Wiorkiewicz-Kuczera J and Karplus M 1995 J. Am. Chem. Soc. 117 11946
[9] Mackerell A D 2004 J. Comput. Chem. 25 1584
[10] Vanommeslaeghe K, Hatcher E, Acharya C, et al. 2010 J. Comput. Chem. 31 671
[11] Wang J, Wolf R M, Caldwell J W, Kollman P A and Case D A 2004 J. Comput. Chem. 25 1157
[12] Yang L, Tan C H, Hsieh M J, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman P A and Luo R 2006 J. Phys. Chem. B 110 13166
[13] Jorgensen W L, Maxwell D S and Tirado-Rives J 1996 J. Am. Chem. Soc. 118 11225
[14] Kaminski G and Jorgensen W L 1996 J. Chem. Phys. 100 18010
[15] Kaminski G A, Friesner R A, Tirado-Rives J and Jorgensen W L 2001 J. Phys. Chem. B 105 6474
[16] Shivakumar D, Harder E, Damm W, Friesner R A and Sherman W 2012 J. Chem. Theor. Comput. 8 2553
[17] Chen S, Yi S, Gao W, Zuo C and Hu Z 2015 J. Comput. Chem. 36 376
[18] York D M, Yang W, Lee H, Darden T and Pedersen L G 1995 J. Am. Chem. Soc. 117 5001
[19] York D M, Darden T A and Pedersen L G 1993 J. Chem. Phys. 99 8345
[20] Sagui C and Darden T A 1999 Ann. Rev. Biophys. Biomol. Struc. 28 155
[21] Huang Y K, Liu X H, Li S and Yan T Y 2016 Chin. Phys. B 25 016801
[22] Wu T M, Wang T J, Chen X, Fang B, Zhang R T and Zhuang W 2016 Chin. Phys. B 25 018701
[23] Wang Y 2009 J. Phys. Chem. B 113 11
[24] Shi R and Yanting W 2013 J. Phys. Chem. B 117 5102
[25] Ren G, Shi R and Wang Y 2014 J. Phys. Chem. B 118 4404
[26] Ren G and Wang Y T 2015 Chin. Phys. B 24 126402
[27] Liu Z R, Wu J and Duan W 2004 Phys. Rev. B 69 085117
[28] Holm C 2004 “Efficient Methods for Long Range Interactions in Periodic Geometries Plus One Application”, Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes, Vol. 23
[29] Cisneros G A, Karttunen M, Ren P and Sagui C 2014 Chem. Rev. 114 779
[30] Ewald P P 1921 Ann. Phys. Leipzig 64 253
[31] Weeks J D 2002 Ann. Rev. Phys. Chem. 53 533
[32] Rodgers J M and Weeks J D 2008 Proc. Natl. Acad. Sci. USA 105 19136
[33] Hu Z and Weeks J D 2010 Phys. Rev. Lett. 105 140602
[34] Rodgers J M, Hu Z and Weeks J D 2011 Mol. Phys. 109 1195
[35] Hu Z 2014 Chem. Commun. 50 14397
[36] Pan C and Hu Z 2014 J. Chem. Theor. Comput. 10 534
[37] Hu Z 2014 J. Chem. Theor. Comput. 10 5254
[38] Pan C and Hu Z 2015 Sci. China: Chemistry 58 1044
[39] Schreiber H and Steinhauser O 1992 Biochemistry 31 5856
[40] Mombelli E, Morris R, Taylor W and Fraternali F 2003 Biophys. J. 84 1507
[41] Soare C M, Teixeira V H and Baptista A M 2003 Biophys. J. 84 1628
[42] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (New York: Oxford University Press)
[43] Yonetani Y 2005 Chem. Phys. Lett. 406 49
[44] van der Spoel D and van Maaren P J 2006 J. Chem. Theor. Comput. 2 1
[45] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[46] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[47] Deserno M and Holm C 1998 J. Chem. Phys. 109 7678
[48] Hockney R and Eastwood J 1981 Computer Simulation Using Particles (New York: McGraw-Hill)
[49] Wolf S P D, Keblinski P and Eggebrecht J 1999 J. Chem. Phys. 110 8254
[50] Schulz R, Lindner B, Petridis L and Smith J C 2009 J. Chem. Theor. Comput. 5 2798
[51] Giese T J, Panteva M T, Chen H and York D M 2015 J. Chem. Theor. Comput. 11 436
[52] Smith P E and Pettitt B M 1996 J. Chem. Phys. 105 4289
[53] Hummer G, Pratt L R and Garca A E 1997 J. Chem. Phys. 107 9275
[54] Figueirido F, Del Buono G S and Levy R M 1997 J. Phys. Chem. B 101 5622
[55] Hunenberger P H and McCammon J A 1999 J. Chem. Phys. 110 1856
[56] Ekimoto T, Matubayasi N and Ikeguchi M 2015 J. Chem. Theor. Comput. 11 215
[57] Bogusz S, Cheatham T E and Brooks B R 1998 J. Chem. Phys. 108 7070
[58] Hummer G, Pratt L R and Garca A E 1996 J. Phys. Chem. 100 1206
[59] Weeks J D, Katsov K and Vollmayr K 1998 Phys. Rev. Lett. 81 4400
[60] Kadanoff L P 2000 Statistical Physics (Singapore: World Scientific)
[61] Chen Y G, Kaur C and Weeks J D 2004 J. Phys. Chem. B 108 19874
[62] Rodgers J M, Kaur C, Chen Y G and Weeks J D 2006 Phys. Rev. Lett. 97 097801
[63] Chen Y G and Weeks J D 2006 Proc. Natl. Acad. Sci. USA 103 7560
[64] Denesyuk N and Weeks J D 2008 J. Chem. Phys. 128 124109
[65] Katsov K and Weeks J D 2001 Phys. Rev. Lett. 86 440
[1] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[2] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[3] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[4] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[5] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[6] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[7] Optimal control strategy for COVID-19 concerning both life and economy based on deep reinforcement learning
Wei Deng(邓为), Guoyuan Qi(齐国元), and Xinchen Yu(蔚昕晨). Chin. Phys. B, 2021, 30(12): 120203.
[8] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[9] Delta-Davidson method for interior eigenproblem in many-spin systems
Haoyu Guan(关浩宇) and Wenxian Zhang(张文献). Chin. Phys. B, 2021, 30(3): 030205.
[10] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[11] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[12] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[13] Investigation of active-region doping on InAs/GaSb long wave infrared detectors
Su-Ning Cui(崔素宁), Dong-Wei Jiang(蒋洞微), Ju Sun(孙矩), Qing-Xuan Jia(贾庆轩), Nong Li(李农), Xuan Zhang(张璇), Yong Li(李勇), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(4): 048502.
[14] Relaxation-rate formula for the entropic lattice Boltzmann model
Weifeng Zhao(赵伟峰), Wen-An Yong(雍稳安). Chin. Phys. B, 2019, 28(11): 114701.
[15] On-node lattices construction using partial Gauss-Hermite quadrature for the lattice Boltzmann method
Huanfeng Ye(叶欢锋), Zecheng Gan(干则成), Bo Kuang(匡波), Yanhua Yang(杨燕华). Chin. Phys. B, 2019, 28(5): 054702.
No Suggested Reading articles found!