Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118104    DOI: 10.1088/1674-1056/24/11/118104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

Yang Su-Dong (杨苏东), Chen Lin (陈琳)
Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
Abstract  We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) under mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.
Keywords:  graphene nanosheet      Pd nanostructure      nanodendrite      electrocatalyst  
Received:  15 May 2015      Revised:  16 June 2015      Accepted manuscript online: 
PACS:  81.07.Wx (Nanopowders)  
  82.47.Gh (Proton exchange membrane (PEM) fuel cells)  
  81.05.ue (Graphene)  
  81.16.Be (Chemical synthesis methods)  
Corresponding Authors:  Yang Su-Dong     E-mail:  yangsd@ms.xjb.ac.cn

Cite this article: 

Yang Su-Dong (杨苏东), Chen Lin (陈琳) Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation 2015 Chin. Phys. B 24 118104

[1] Mazumder V, Lee Y and Sun S;2010 Adv. Funct. Mater. 20 1224
[2] Tian N, Zhou Z Y, Sun S G, Ding Y and Wang Z L;2007 Science 316 732
[3] Zhao X, Chen S, Fang Z C, Ding J, Sang W, Wang Y C, Zhao J, Peng Z M and Zeng J;2015 J. Am. Chem. Soc. 137 2804
[4] Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagege A, Audonnet F and Remita H;2009 Chem. Mater. 21 1612
[5] Yang S D, Shen C M, Tong H, He W, Zhang X G and Gao H J;2011 Chin. Phys. B 20 113301
[6] Xie X B, Gao G H, Pan Z Y, Wang T J, Meng X Q and Cai L T;2015 Sci. Rep. 5 8515
[7] Yang S D, Shen C M, Tian Y, Zhang X G and Gao H J;2014 Nanoscale 6 13154
[8] Lee Y W, Kim M, Kim Y, Kang S W, Lee J H and Han S W;2010 J. Phys. Chem. C 114 7689
[9] Guo S J, Dong S J and Wang E K;2010 ACS Nano 4 547
[10] Lee Y W, Kim M and Han S W;2010 Chem. Commun. 46 1535
[11] Hummers W S and Offeman R E;1958 J. Am. Chem. Soc. 80 1339
[12] Xu C, Wang X and Zhu J;2008 J. Phys. Chem. C 112 19841
[13] Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W and Tour J M;2010 ACS Nano 4 4806
[14] Li Y J, Gao W, Ci L J, Wang C M and Ajayan P M;2010 Carbon 48 1124
[15] Liu Y, Wang C, Wei Y J, Zhu L Y, Li D G, Jiang J S, Markovic N M, Stamenkovic V R and Sun S H;2011 Nano Lett. 11 1614
[16] Zhang L Y, Zhao Z L and Li C M;2015 Nano Energy 11 71
[17] Watt J, Young N, Haigh S, Kirkland A and Tilley R D;2009 Adv. Mater. 21 2288
[18] Wang L, Hu C P, Nemoto Y, Tateyama Y and Yamauchi Y;2010 Cryst. Growth Des. 10 3454
[19] Wang Y Y, Qi Y Y, Zhang D J and Liu C B;2014 J. Phys. Chem. C 118 2067
[20] Manoharan R and Prabhuram J;2001 J. Power Sources 96 220
[21] Zhang X, Lu W, Da J, Wang H, Zhao D and Webley P W;2009 Chem. Commun. 2 195
[22] Wen Z, Wang Q and Li J;2008 Adv. Funct. Mater. 18 959
[1] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[2] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[3] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚). Chin. Phys. B, 2022, 31(12): 128108.
[4] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[5] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[6] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[7] In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨). Chin. Phys. B, 2018, 27(6): 068103.
[8] Laser-induced fabrication of highly branched CuS nanocrystals with excellent near-infrared absorption properties
Ruyu Yang(杨汝雨), Zhongyi Zhang(张中义), Linlin Xu(徐林林), Shuang Li(李爽), Yang Jiao(焦扬), Hua Zhang(张华), Ming Chen(陈明). Chin. Phys. B, 2017, 26(7): 076102.
No Suggested Reading articles found!