Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 108402    DOI: 10.1088/1674-1056/24/10/108402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Charge and spin-dependent thermal efficiency of polythiophene molecular junction in presence of dephasing

Z. Golsanamlou, M. Bagheri Tagani, H. Rahimpour Soleimani
Department of Physics, University of Guilan, P. O. Box 41335-1914, Rasht, Iran
Abstract  The charge and spin-dependent thermoelectric properties of different lengths of polythiophene in a molecular junction are investigated using the Büttiker probe method within Green function formalism in linear response regime. The coupling of the molecular chain to three-dimensional ferromagnetic electrodes is described by a tight-binding model for both parallel and antiparallel spin configurations. The decrease of height of transmission probability peaks and thermoelectric coefficients are observed in the presence of the Büttiker probes. The reduction is more intensive in the strong dephased chains. Results show that the spin magnetothermopower is bigger than the charge magnetothermopower due to the larger difference between the spin thermopowers with respect to the charge ones. In addition, we observed that the kind of carriers participating in the thermoelectric transport depends on the number of the thiophene rings.
Keywords:  polythiophene      Green function      thermoelectric coefficients      Büttiker probes      ferromagnetic electrodes  
Received:  23 February 2015      Revised:  06 May 2015      Accepted manuscript online: 
PACS:  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  75.76.+j (Spin transport effects)  
  73.63.Rt (Nanoscale contacts)  
Corresponding Authors:  Z. Golsanamlou, H. Rahimpour Soleimani     E-mail:  zahra.golsanamlou@gmail.com;rahimpour@guilan.ac.ir

Cite this article: 

Z. Golsanamlou, M. Bagheri Tagani, H. Rahimpour Soleimani Charge and spin-dependent thermal efficiency of polythiophene molecular junction in presence of dephasing 2015 Chin. Phys. B 24 108402

[1] Zhag Y, Zelinskyy Y and May V 2013 Phys. Rev. B 88 155426
[2] Wierzbinski E, Venkatramani R, Davis K L, Bezer S, J. Kong, Xing Y, Borguet E, Achim C, Beratan D N and Waldeck D H 2013 ACS Nano 7 5391
[3] Nozaki D, Gomes da Rocha C, Pastawski H M and Cuniberti G 2012 Phys. Rev. B 85 155327
[4] Lai W, Xing Y and Ma Z 2013 J. Phys.: Condens. Matter 25 205304
[5] Lai W, Zhang Ch and Ma Z 2015 Front. Phys. 10 59
[6] Büttiker M 1986 Phys. Rev. Lett. 57 1761
[7] DAmato J L and Pastawski H M 1990 Phys. Rev. B 41 7411
[8] Rejec T, Žitko R, Mravlje J and Ramšak A 2012 Phys. Rev. B 85 085117
[9] Andergassen S, Costi T A and ZlatićV 2011 Phys. Rev. B 84 241107
[10] Zheng J, Chi F and Guo Y 2012 J. Phys.: Condens. Matter 24 265301
[11] Bergfield J P, Solis M and Stafford C A 2010 ACS Nano 4 5314
[12] Wei J H, Liu X. J, Xie S J and Yan Y 2009 J. Chem. Phys. 131 064906
[13] Yakuphanoglu F, Liu H T and Xu J K 2007 J. Phys. Chem. B 111 7535
[14] Hiroshigo Y, Ookawa M and Toshima N 2007 Synthetic Metals 157 647
[15] Malen J A, Doak P, Baheti K, Tilley T D, Segalman R A and Majumdar A 2009 Nano Lett. 9 1164
[16] Bubnova O, Berggren M and Crispin X 2012 J. Am. Chem. Soc. 134 16456
[17] Rittmeyer S P and GroßA 2012 Beilstein J. Nanotechnol. 3 909
[18] Gao X, Uehara K, Klug D D, Patchkovskii S, Tse J S and Tritt T M 2005 Phys. Rev. B 72 125202
[19] Fu J Y, Liu D S and Xie S J 2008 Physica E 40 915
[20] Lu B Y, Liu C C, Lu S, Xu J K, Jiang F K, Li Y Zh and Zhang Z 2010 Chin. Phys. Lett. 27 057201
[21] Wei J H, Liu X J, Xie S J and Yan Y 2009 J. Chem. Phys. 131 064906
[22] Pauly F, Viljas J K and Cuevas J C 2008 Phys. Rev. B 78 035315
[23] Popescue A and Haney P M 2012 Phys. Rev. B 86 155452
[24] Golizade-mojarrad R and Datta S 2007 Phys. Rev. B 75 081301
[25] Dutta P, Maiti S K and Karmakar S N 2010 Organic Electronics 11 1120
[26] Su W P, Schrieffer J R an Heeger A 1980 Phys. Rev. B 22 2099
[27] Datta S 2005 Quantum Transport: Atom to Transistor (Camberige: Cambridge University Press)
[28] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[29] Dey M, Maiti S K and Karmakar S N 2011 Organic Electronics 12 1017
[30] Kang Y M, Xie Z, An Zh, Li Y Ch and Chen N X 2003 J. Phys. Chem. Solids 64 377
[31] Wei J H, Xie S J, Mei L M, Berakdar J and Yan Y 2007 Organic Electronics 8 487
[32] Hu G C, Wei J H and Xie S J 2007 Appl. Phys. Lett. 91 142115
[33] Xie S J, Mie L M and Lin D L 1994 Phys. Rev. B 50 13364
[34] Yoshihiro A and F. Hidetoshi 2005 Phys. Rev. B 72 085431
[35] Yaghobi M and Yuonesi M 2012 Mol. Phys. 110 49
[36] Zimbovskaya N A 2013 Transport Properties of Molecular Junctions (Berlin: Springer Tracts in Modern Physics, Springer)
[37] Ahmadi Fouladi A, Ketabi S A, Elahi S M and Sebt S A 2012 Eur. Phys. J. B 85 163
[38] Datta S 1997 Electronic transport in mesoscopic systems (Cambridge: Cambridge University Press)
[39] Trocha P and Barnas J 2012 Phys. Rev. B 85 085408
[40] Liu Y S, Chi F, Yang X F and Feng J F 2011 J. Appl. Phys. 109 053712
[41] Bagheri Tagani M and Rahimpour Soleimani H 2012 J. Appl. Phys. 112 103719
[42] Bagheri Tagani M and Rahimpour Soleimani H 2013 J. Appl. Phys. 113 143709
[43] Bagheri Tagani M and Rahimpour Soleimani H 2012 Solid State Commun. 152 914
[44] Golsanamlou Z, Izadi Vishkayi S, Bagheri Tagani M and H. Rahimpour Soleimani 2014 Chem. Phys. Lett. 594 51
[45] Zeng C, Li B, Wang, Wang H, Wang K, Yang J, Hou J G and Zhu Q 2002 J. Chem. Phys. 117 851
[46] Viljas J K, Pauly F and Cuevas J C 2008 Phys. Rev. B 77 155119
[47] Świrkowicz R, Wierzbicki M and BarnaśJ 2009 Phys. Rev. B 80 195409
[48] Golsanamlou Z, Bagheri Tagani M and Rahimpour Soleimani H 2014 Macromolecular Theory and Simulations 23 311
[1] Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field
Shou-Qing Jia(贾守卿). Chin. Phys. B, 2019, 28(7): 070401.
[2] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[3] Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction
Fangyuan Wang(王方原), Guiqin Li(李桂琴). Chin. Phys. B, 2016, 25(7): 077304.
[4] Position-dependent property of resonant dipole—dipole interaction mediated by localized surface plasmon of an Ag nanosphere
Xu Dan (许丹), Wang Xiao-Yun (王小云), Huang Yong-Gang (黄勇刚), Ouyang Shi-Liang (欧阳仕粮), He Hai-Long (何海龙), He Hao (何浩). Chin. Phys. B, 2015, 24(2): 024205.
[5] First-principles study of structure and nonlinear optical properties of CdHg(SCN)4 crystal
Zhang Peng (张鹏), Kong Chui-Gang (孔垂岗), Zheng Chao (郑超), Wang Xin-Qiang (王新强), Ma Yue (马跃), Feng Jin-Bo (冯金波), Jiao Yu-Qiu (矫玉秋), Lu Gui-Wu (卢贵武). Chin. Phys. B, 2015, 24(2): 024221.
[6] Polythiophene encapsulated inside (13, 0) CNT:A nano-hybrid system
Tayebeh Movlarooy. Chin. Phys. B, 2014, 23(6): 066201.
[7] Phonon-dependent transport through a serially coupled double quantum dot system
M. Bagheri Tagani, H. Rahimpour Soleimani. Chin. Phys. B, 2014, 23(5): 057302.
[8] Transport through artificial single-molecule magnets: Spin-pair state sequential tunneling and Kondo effects
Niu Peng-Bin (牛鹏斌), Wang Qiang (王强), Nie Yi-Hang (聂一行). Chin. Phys. B, 2013, 22(2): 027307.
[9] Quantization of electromagnetic field in quadratic continuous nonlinear absorptive dielectrics
Li Wei(李维), Liu Shi-Bing(刘世炳), Yu Cheng-Xin(于承新), and Yang Wei(杨巍). Chin. Phys. B, 2010, 19(2): 024208.
[10] Transport properties of boron nanotubes investigated by ab initio calculation
Guo Wei(郭伟), Hu Yi-Bin(胡亦斌), Zhang Yu-Yang(张余洋), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2009, 18(6): 2502-2507.
[11] Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes
Wang Rui-Qiang(王瑞强) and Jiang Kai-Ming(蒋开明) . Chin. Phys. B, 2009, 18(12): 5443-5450.
[12] Dynamical study on charge injection and transport in a metal/polythiophene/metal structure
Li Dong-Mei(李冬梅), Liu Xiao-Jing(刘晓静), Li Yuan(李元), Li Hai-Hong(李海宏), Hu Gui-chao(胡贵超), Gao Kun(高琨), Liu De-Sheng(刘德胜), and Xie Shi-Jie(解士杰). Chin. Phys. B, 2008, 17(8): 3067-3076.
[13] Photon-assisted electronic structure and transport for a quantum dot
Liao Wen-Hu(廖文虎), Gao Qin-Xiang(高钦翔), and Zhou Guang-Hui(周光辉). Chin. Phys. B, 2007, 16(7): 2106-2110.
[14] Electron transport for a laser-irradiated quantum channel with Rashba spin--orbit coupling
Zhao Hua(赵华), Liao Wen-Hu(廖文虎), and Zhou Guang-Hui(周光辉). Chin. Phys. B, 2007, 16(6): 1748-1752.
[15] Nonideal effects in quantum field-effect directional coupler
Xie Yue-E(谢月娥), Yan Xiao-Hong(颜晓红), and Chen Yuan-Ping(陈元平). Chin. Phys. B, 2006, 15(10): 2415-2421.
No Suggested Reading articles found!