ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Wide-band circular polarization-keeping reflection mediated by metasurface |
Li Yong-Feng (李勇峰)a, Zhang Jie-Qiu (张介秋)a, Qu Shao-Bo (屈绍波)a, Wang Jia-Fu (王甲富)a, Zheng Lin (郑麟)a, Zhou Hang (周航)a, Xu Zhuo (徐卓)b, Zhang An-Xue (张安学)c |
a College of Science, Air Force Engineering University, Xi'an 710005, China; b Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China; c School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract In this paper, we show that circular polarization-keeping reflection can be achieved using reflective metasurfaces. The underlying physical mechanism of the polarization-keeping reflection is analyzed using a reflection matrix. A wideband circular polarization-keeping reflector is demonstrated using N-shaped resonators. Both the simulation and experiment results show that the polarization-keeping reflection can be achieved with a high efficiency larger than 98% over the frequency range from 9.2 GHz to 17.7 GHz for both incident left- and right-handed circularly polarized waves. Under oblique incidence, the bandwidth increases as the incident angle varies from 0° to 80°. Moreover, the co-polarization reflection is independent of the incident azimuth angles.
|
Received: 20 April 2014
Revised: 28 August 2014
Accepted manuscript online:
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Ja
|
(Polarization)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
92.60.Ta
|
(Electromagnetic wave propagation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 61331005, 11204378, 11274389, 11304393, and 61302023) and the National Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2011JQ8031 and 2013JM6005). |
Corresponding Authors:
Zhang Jie-Qiu
E-mail: Zhangjiq0@163.com
|
Cite this article:
Li Yong-Feng (李勇峰), Zhang Jie-Qiu (张介秋), Qu Shao-Bo (屈绍波), Wang Jia-Fu (王甲富), Zheng Lin (郑麟), Zhou Hang (周航), Xu Zhuo (徐卓), Zhang An-Xue (张安学) Wide-band circular polarization-keeping reflection mediated by metasurface 2015 Chin. Phys. B 24 014202
|
[1] |
Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
|
[2] |
Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
|
[3] |
Sun Y Y, Han L, Shi X Y, Wang Z N and Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese)
|
[4] |
Monticone F and Alù A 2014 Chin. Phys. B 23 047809
|
[5] |
Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z and Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)
|
[6] |
Pozar D M, Targonski S D and Pokuls R 1999 IEEE Trans. Antenn. Propag. 47 1167
|
[7] |
Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z and Capasso F 2012 Nano Lett. 12 1702
|
[8] |
Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y and Li Y F 2012 Appl. Phys. Lett. 101 201104
|
[9] |
Artiga X, Perruisseau-Carrier J, Bresciani D and Legay H 2012 IEEE Antennas Wireless Propagat. Lett. 11 1489
|
[10] |
Zhao Y and Alù A 2011 Phys. Rev. B 84 205428.
|
[11] |
Wu S, Zhang Z, Zhang Y, Zhang K Y, Zhou L, Zhang X J and Zhu Y Y 2013 Phys. Rev. Lett. 110 207401
|
[12] |
Chiang Y J and Yen T J 2013 Appl. Phys. Lett. 102 011129
|
[13] |
Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S and Wegener M 2009 Science 325 1513
|
[14] |
Zhu H L, Cheung S W, Chung K L and Yuk T I 2013 IEEE Trans. Antenn. Propag. 61 4615
|
[15] |
Shi Y L, Zhou Q L, Liu W, Zhao D M, Li L and Zhang C L 2011 Chin. Phys. B 20 094102
|
[16] |
Wang K R, Kuang H, Wang Y J, Yuan J H and Yan B B 2013 Chin. Phys. B 22 084201
|
[17] |
Tang Q, Meng F Y, Zhang K, Wu Q and Li L W 2011 Acta Phys. Sin. 60 014206 (in Chinese)
|
[18] |
Chen L T, Cheng Y Z, Nie Y and Gong R Z 2012 Acta Phys. Sin. 61 094203 (in Chinese)
|
[19] |
Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z and Zhang A X 2014 J. Appl. Phys. 115 234506
|
[20] |
Huang Y H, Zhou Y and Wu S T 2007 Opt. Express 15 6414
|
[21] |
Young L, Robinson L A and Hacking C A 1973 IEEE Trans. Antenn. Propag. 21 376
|
[22] |
Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075
|
[23] |
Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
|
[24] |
Chin J Y, Lu M Z and Cui T J 2008 Appl. Phys. Lett. 93 251903
|
[25] |
Euler M, Fusco V, Cahill R and Dickie R 2010 IET Microw. Antenn. Propagat. 4 1764
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|