Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 014202    DOI: 10.1088/1674-1056/24/1/014202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wide-band circular polarization-keeping reflection mediated by metasurface

Li Yong-Feng (李勇峰)a, Zhang Jie-Qiu (张介秋)a, Qu Shao-Bo (屈绍波)a, Wang Jia-Fu (王甲富)a, Zheng Lin (郑麟)a, Zhou Hang (周航)a, Xu Zhuo (徐卓)b, Zhang An-Xue (张安学)c
a College of Science, Air Force Engineering University, Xi'an 710005, China;
b Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
c School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  In this paper, we show that circular polarization-keeping reflection can be achieved using reflective metasurfaces. The underlying physical mechanism of the polarization-keeping reflection is analyzed using a reflection matrix. A wideband circular polarization-keeping reflector is demonstrated using N-shaped resonators. Both the simulation and experiment results show that the polarization-keeping reflection can be achieved with a high efficiency larger than 98% over the frequency range from 9.2 GHz to 17.7 GHz for both incident left- and right-handed circularly polarized waves. Under oblique incidence, the bandwidth increases as the incident angle varies from 0° to 80°. Moreover, the co-polarization reflection is independent of the incident azimuth angles.
Keywords:  polarization-keeping reflection      left-hand (right-hand) circular polarization      reflective metasurface      axial ratio  
Received:  20 April 2014      Revised:  28 August 2014      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 61331005, 11204378, 11274389, 11304393, and 61302023) and the National Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2011JQ8031 and 2013JM6005).
Corresponding Authors:  Zhang Jie-Qiu     E-mail:  Zhangjiq0@163.com

Cite this article: 

Li Yong-Feng (李勇峰), Zhang Jie-Qiu (张介秋), Qu Shao-Bo (屈绍波), Wang Jia-Fu (王甲富), Zheng Lin (郑麟), Zhou Hang (周航), Xu Zhuo (徐卓), Zhang An-Xue (张安学) Wide-band circular polarization-keeping reflection mediated by metasurface 2015 Chin. Phys. B 24 014202

[1] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[2] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[3] Sun Y Y, Han L, Shi X Y, Wang Z N and Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese)
[4] Monticone F and Alù A 2014 Chin. Phys. B 23 047809
[5] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z and Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)
[6] Pozar D M, Targonski S D and Pokuls R 1999 IEEE Trans. Antenn. Propag. 47 1167
[7] Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z and Capasso F 2012 Nano Lett. 12 1702
[8] Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y and Li Y F 2012 Appl. Phys. Lett. 101 201104
[9] Artiga X, Perruisseau-Carrier J, Bresciani D and Legay H 2012 IEEE Antennas Wireless Propagat. Lett. 11 1489
[10] Zhao Y and Alù A 2011 Phys. Rev. B 84 205428.
[11] Wu S, Zhang Z, Zhang Y, Zhang K Y, Zhou L, Zhang X J and Zhu Y Y 2013 Phys. Rev. Lett. 110 207401
[12] Chiang Y J and Yen T J 2013 Appl. Phys. Lett. 102 011129
[13] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S and Wegener M 2009 Science 325 1513
[14] Zhu H L, Cheung S W, Chung K L and Yuk T I 2013 IEEE Trans. Antenn. Propag. 61 4615
[15] Shi Y L, Zhou Q L, Liu W, Zhao D M, Li L and Zhang C L 2011 Chin. Phys. B 20 094102
[16] Wang K R, Kuang H, Wang Y J, Yuan J H and Yan B B 2013 Chin. Phys. B 22 084201
[17] Tang Q, Meng F Y, Zhang K, Wu Q and Li L W 2011 Acta Phys. Sin. 60 014206 (in Chinese)
[18] Chen L T, Cheng Y Z, Nie Y and Gong R Z 2012 Acta Phys. Sin. 61 094203 (in Chinese)
[19] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z and Zhang A X 2014 J. Appl. Phys. 115 234506
[20] Huang Y H, Zhou Y and Wu S T 2007 Opt. Express 15 6414
[21] Young L, Robinson L A and Hacking C A 1973 IEEE Trans. Antenn. Propag. 21 376
[22] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075
[23] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[24] Chin J Y, Lu M Z and Cui T J 2008 Appl. Phys. Lett. 93 251903
[25] Euler M, Fusco V, Cahill R and Dickie R 2010 IET Microw. Antenn. Propagat. 4 1764
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[3] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[6] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[12] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[13] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[14] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[15] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
No Suggested Reading articles found!