Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097301    DOI: 10.1088/1674-1056/23/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Band-stop optical nanofilters with split-ring resonators based on metal-insulator-metal structure

Zhang Hui-Yun (张会云)a, Shen Duan-Long (申端龙)a, Zhang Yu-Ping (张玉萍)a, Yang Wei-Jie (杨伟杰)b, Yuan Cai (袁偲)c, Liu Meng (刘蒙)a, Yin Yi-Heng (尹贻恒)a, Wu Zhi-Xin (吴志心)a
a Qingdao Key Laboratory of Terahertz Technology, College of Electronics, Communication, and Physics, Shandong University of Science and Technology, Qingdao 266590, China;
b Dongjun Information Technology Co., Ltd., Shanghai 200050, China;
c College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072, China
Abstract  Novel band-stop filters with circular split-ring resonators based on the metal-insulator-metal (MIM) structure are presented, with their transmission properties of SPPs propagating through the filter simulated by the finite-difference time-domain (FDTD) method. The variation of the gap of the split ring can affect the transmission characteristics, i.e., the transmission spectrum of SPPs exhibiting a shift, which is useful for modulating the filter. Linear and nonlinear media are used in the resonator respectively. By varying the refractive index of the linear medium, the transmission properties can be changed obviously, and the effect caused by changing the incident intensity with a nonlinear medium is similar. Several resonant modes that are applicable can be enhanced by changing the position of the gap of the split ring. Thus, the transmission properties can be modulated by adjusting the size of the gap, varying the refractive index, and changing the incident intensity of the input light. These methods may play significant roles in applications of optical integrated circuits and nanostructural devices.
Keywords:  surface plasmons      nano filter      split-ring resonator      transmission property  
Received:  17 December 2013      Revised:  30 March 2014      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.20.Bh (Theory, models, and numerical simulation)  
  43.58.Kr (Spectrum and frequency analyzers and filters; acoustical and electrical oscillographs; photoacoustic spectrometers; acoustical delay lines and resonators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2011FM009 and ZR2012FM011), the Research Fund of Shandong University of Science and Technology (SDUST), China (Grant No. 2010KYJQ103), the SDUST Research Fund, China (Grant No. 2012KYTD103), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J11LG20), and the Qingdao Economic & Technical Development Zone Science & Technology Project, China (Grant No. 2013-1-64).
Corresponding Authors:  Zhang Yu-Ping     E-mail:  sdust_thz@163.com

Cite this article: 

Zhang Hui-Yun (张会云), Shen Duan-Long (申端龙), Zhang Yu-Ping (张玉萍), Yang Wei-Jie (杨伟杰), Yuan Cai (袁偲), Liu Meng (刘蒙), Yin Yi-Heng (尹贻恒), Wu Zhi-Xin (吴志心) Band-stop optical nanofilters with split-ring resonators based on metal-insulator-metal structure 2014 Chin. Phys. B 23 097301

[1] Cai W, Wang L, Zhang X Z, Xu J J and Javier García de Abajo F 2010 Phys. Rev. B 82 125454
[2] Liu J Q, Wang L L, He M D, Huang W Q, Wang D Y, Zou B S and Wen S C 2008 Opt. Express 16 4888
[3] Zheng G G, Xu L H, Pei S X and Chen Y Y 2014 Chin. Phys. B 23 034213
[4] Pala R A, Shimizu K T, Melosh N A and Brongersma M L 2008 Nano Lett. 8 1506
[5] Han Z H, Liu L and Forsberg E 2006 Opt. Commun. 259 690
[6] Zhong R B, Liu W H, Zhou J and Liu S G 2012 Chin. Phys. B 21 117303
[7] Wang Y Q, Wang Y H, Zheng X H, Ye J S, Zhang Y and Liu S T 2014 Chin. Phys. B 23 034202
[8] Xiao S H, Liu L and Qiu M 2006 Opt. Express 14 2932
[9] Wang T B, Wen X W, Yin C P and Wang H Z 2009 Opt. Express 17 24096
[10] Okamoto H, Yamaguchi K, Haraguchi M and Okamoto T 2010 J. Nonlinear Opt. Phys. 19 583
[11] Zhai X, Wen S C, Xiang D, Wang L L, Rexidaiguli W, Wang L and Fan D Y 2013 J. Nanomater. 2013 484207
[12] Yun B F, Hu G H and Cui Y P 2010 J. Phys. D: Appl. Phys. 43 385102
[13] Setayesh A, Mirnaziry S R and Abrishamian M S 2011 J. Opt. 13 035004
[14] Peng X, Li H J, Wu C N, Cao G T and Liu Z M 2013 Opt. Commun. 294 368
[15] Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M and Nakagaki M 2008 Opt. Express 16 16314
[16] Lu H, Liu X M, Mao D, Wang L R and Gong Y K 2010 Opt. Express 18 17922
[17] Wang G X, Lu H, Liu X M, Gong Y K and Wang L R 2011 Appl. Opt. 50 5287
[18] Tao J, Wang Q J and Huang X G 2011 Plasmonics 6 753
[19] Yun B F, Hu G H and Cui Y P 2013 Plasmonics 8 267
[20] Hosseini A and Massoud Y 2007 Appl. Phys. Lett. 90 181102
[21] Zand I, Mahigir A, Pakizeh T and Abrishamian M S 2012 Opt. Express 20 7516
[22] Zand I, Abrishamian M S and Berini P 2013 Opt. Express 21 79
[23] Zheng G G, Su W, Chen Y Y, Zhang C Y, Lai M and Liu Y Z 2012 J. Opt. 14 055001
[24] Rakić A D, Djurišić A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[1] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[4] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[5] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[6] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[7] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[8] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[9] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[10] Theoretical study on the lasing plasmon of a split ring for label-free detection of single molecules and single nanoparticles
Chunjie Zheng(郑春杰), Tianqing Jia(贾天卿), Hua Zhao(赵华), Yingjie Xia(夏英杰), Shian Zhang(张诗按), Zhenrong Sun(孙真荣). Chin. Phys. B, 2018, 27(5): 057802.
[11] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[12] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
[13] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[14] Excitation of anti-symmetric coupled spoof SPPs in 3D SIS waveguides based on coupling
Li-li Tian(田莉莉), Yang Chen(陈杨), Jian-long Liu(刘建龙), Kai Guo(郭凯), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2016, 25(7): 078401.
[15] Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁). Chin. Phys. B, 2016, 25(7): 077301.
No Suggested Reading articles found!