Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 073201    DOI: 10.1088/1674-1056/23/7/073201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

On-chip optical pulse shaper for arbitrary waveform generation

Liao Sha-Sha (廖莎莎), Yang Ting (杨婷), Dong Jian-Ji (董建绩)
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for all taps are controlled by an external thermal source, resulting in an optical pulse shaper. We further demonstrate optical arbitrary waveform generation based on the optical pulse shaper assisted by an optical frequency comb injection. Four different optical waveforms are generated when setting the central wavelengths at 1533.78 nm and 1547.1 nm and setting the thermal source temperatures at 23 ℃ and 33 ℃, respectively. Our scheme has distinct advantages of compactness, capability for integrating with electronics since the integrated silicon waveguide is employed.
Keywords:  pulse shaping      optical arbitrary waveform generation      silicon photonics      microwave photonics  
Received:  15 November 2013      Revised:  06 January 2014      Accepted manuscript online: 
PACS:  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  42.79.Gn (Optical waveguides and couplers)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB301704), the Program for New Century Excellent Talents in Ministry of Education of China (Grant No. NCET-11-0168), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201139), and the National Natural Science Foundation of China (Grant Nos. 60901006 and 11174096).
Corresponding Authors:  Dong Jian-Ji     E-mail:  jjdong@mail.hust.edu.cn
About author:  32.30.Bv; 42.79.Gn; 42.79.Sz

Cite this article: 

Liao Sha-Sha (廖莎莎), Yang Ting (杨婷), Dong Jian-Ji (董建绩) On-chip optical pulse shaper for arbitrary waveform generation 2014 Chin. Phys. B 23 073201

[1] Shen M and Minasian R A 2004 IEEE Photonic Tech. L 16 1155
[2] Luo B W, Dong J J, Yu Y, Yang T and Zhang X L 2013 Chin. Phys. B 22 023201
[3] Dong J J, Luo B W, Huang D X and Zhang X L 2012 Chin. Phys. B 21 043201
[4] Dong J J, Luo B W, Zhang Y, Lei L, Huang D X and Zhang X L 2012 Chin. Phys. Lett. 29 014203
[5] Zheng A L, Dong J J, Lei L, Yang T and Zhang X L 2013 Chin. Phys. B 23 033201
[6] Weiner A M 2011 Opt. Commun. 284 3669
[7] Wang N, Han H N, Li D H and Wei Z Y 2012 Acta Phys. Sin. 61 184201 (in Chinese)
[8] Fang X, Wang D N and Li S 2003 JOSA B 20 1603
[9] Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M and Qi M 2010 Nat. Photon. 4 117
[10] Dugan M, Tull J and Warren W 1997 JOSA B 14 2348
[11] McKinney J, Leaird D and Weiner A 2002 Opt. Lett. 27 1345
[12] Weiner A M, Leaird D E, Patel J S and Wullert J R 1990 Opt. Lett. 15 326
[13] Weiner A M, Leaird D E, Patel J S and Wullert J R 1992 IEEE J. Sel. Top. Quant. 28 908
[14] Wefers M M and Nelson K A 1995 Opt. Lett. 20 1047
[15] Jiang Z, Huang C B, Leaird D E and Weiner A M 2007 Nat. Photon. 1 463
[16] Supradeepa V, Huang C B, Leaird D E and Weiner A M 2008 Opt. Express 16 11878
[17] Torres-Company V, Metcalf A J, Leaird D E and Weiner A M 2012 IEEE Photonic Tech. L 24 891
[18] Zhang A and Li C 2013 Opt. Laser Technol. 52 81
[19] Vantrease D, Schreiber R, Monchiero M, McLaren M, Jouppi N P, Fiorentino M, Davis A, Binkert N, Beausoleil R G and Ahn J H 2008 ACM Comp. Ar. 36 153
[20] Batten C, Joshi A, Orcutt J, Khilo A, Moss B, Holzwarth C W, Popovic M A, Li H, Smith H I and Hoyt J L 2009 IEEE Micro 29 8
[21] Wang S, Ciftcioglu B and Wu H 2010 Opt. Express 18 19314
[22] Wang S and Wu H 2011 Opt. Express 19 16259
[1] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[2] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[3] Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator
Yu-Lin Zhu(朱昱琳), Bei-Lei Wu(武蓓蕾), Jing Li(李晶), Mu-Guang Wang(王目光), Shi-Ying Xiao(肖世莹), and Feng-Ping Yan(延凤平). Chin. Phys. B, 2022, 31(4): 044202.
[4] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[5] Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring
Chuangye Wang(王创业), Tigang Ning(宁提纲), Jing Li(李晶), Li Pei(裴丽), Jingjing Zheng(郑晶晶), and Jingchuan Zhang(张景川). Chin. Phys. B, 2022, 31(1): 010702.
[6] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[7] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[8] Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Jie Li(李洁), Yirong Jin(金贻荣), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(7): 074206.
[9] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[10] 16-channel dual-tuning wavelength division multiplexer/demultiplexer
Pei Yuan(袁配), Yue Wang(王玥), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2018, 27(12): 124208.
[11] 1.3-μm InAs/GaAs quantum dots grown on Si substrates
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 128105.
[12] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[13] Mechanical strains in pecvd SiNx:H films for nanophotonic application
O. Semenova, A. Kozelskaya, Li Zhi-Yong, Yu Yu-De. Chin. Phys. B, 2015, 24(10): 106801.
[14] Diversity of photonic differentiators based on flexible demodulation of phase signals
Zheng Ao-Ling (郑傲凌), Dong Jian-Ji (董建绩), Lei Lei (雷蕾), Yang Ting (杨婷), Zhang Xin-Liang (张新亮). Chin. Phys. B, 2014, 23(3): 033201.
[15] Optical pulse shaper with integrated slab waveguide for arbitrary waveform generation using optical gradient force
Liao Sha-Sha (廖莎莎), Min Shu-Cun (闵书存), Dong Jian-Ji (董建绩). Chin. Phys. B, 2014, 23(12): 124211.
No Suggested Reading articles found!