Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088107    DOI: 10.1088/1674-1056/23/8/088107
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Quantum transport characteristics in single and multiple N-channel junctionless nanowire transistors at low temperatures

Wang Hao (王昊), Han Wei-Hua (韩伟华), Ma Liu-Hong (马刘红), Li Xiao-Ming (李小明), Yang Fu-Hua (杨富华)
Engineering Research Center for Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Single and multiple n-channel junctionless nanowire transistors (JNTs) are fabricated and experimentally investigated at variable temperatures. Clear current oscillations caused by the quantum-confinement effect are observed in the curve of drain current versus gate voltage acquired at low temperatures (10 K-100 K) and variable drain bias voltages (10 mV-90 mV). Transfer characteristics exhibit current oscillation peaks below flat-band voltage (VFB) at temperatures up to 75 K, which is possibly due to Coulomb-blocking from quantum dots, which are randomly formed by ionized dopants in the just opened n-type one-dimensional (1D) channel of silicon nanowires. However, at higher voltages than VFB, regular current steps are observed in single-channel JNTs, which corresponds to the fully populated subbands in the 1D channel. The subband energy spacing extracted from transconductance peaks accords well with theoretical predication. However, in multiple-channel JNT, only tiny oscillation peaks of the drain current are observed due to the combination of the drain current from multiple channels with quantum-confinement effects.
Keywords:  junctionless nanowire transistors (JNT)      quantum transport      current oscillations      low temperatures  
Received:  04 September 2013      Revised:  17 February 2014      Accepted manuscript online: 
PACS:  81.07.Gf (Nanowires)  
  85.30.Tv (Field effect devices)  
  73.63.Hs (Quantum wells)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
Fund: Project supported partly by the National Basic Research Program of China (Grant No. 2010CB934104) and the National Natural Science Foundation of China (Grant Nos. 61376069 and 61327813).
Corresponding Authors:  Han Wei-Hua     E-mail:  weihua@semi.ac.cn

Cite this article: 

Wang Hao (王昊), Han Wei-Hua (韩伟华), Ma Liu-Hong (马刘红), Li Xiao-Ming (李小明), Yang Fu-Hua (杨富华) Quantum transport characteristics in single and multiple N-channel junctionless nanowire transistors at low temperatures 2014 Chin. Phys. B 23 088107

[1] Colinge J P 2004 Solid-State Electron. 48 897
[2] Colinge J P 2008 FinFETs and Other Multi-Gate Transistors (New York: Springer) pp. 1-48
[3] Colinge J P, Gao M, Romano-Rodriguez A, Maes H and Claeys C 1990 Electron Devices Meeting, 1990, IEDM 'm 90. Technical Digest., International, December 9-12 1990, San Francisco, CA, USA, p. 595
[4] Ferain I, Colinge C A and Colinge J P 2011 Nature 479 310
[5] Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I and Colinge J P 2009 Appl. Phys. Lett. 94 053511
[6] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A and White M 2010 Nature Nanotech. 5 225
[7] Park J T, Kim J Y, Lee C W and Colinge J P 2010 Appl. Phys. Lett. 97 172101
[8] Evans G, Mizuta H and Ahmed H 2001 Jpn. J. Appl. Phys. 40 5837
[9] Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesemans S 2006 Phys. Rev. Lett. 97 206805
[10] Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
[11] Trevisoli R D, Doria R T, de Souza M and Pavanello M A 2011 Semicond. Sci. Technol. 26 105009
[12] Kim R and Lundstrom M S 2008 IEEE Trans. Nanotechnol. 7 787
[13] Li X M, Han W H, Wang H, Ma L H, Zhang Y B, Du Y D and Yang F H 2013 Appl. Phys. Lett. 102 223507
[14] Augke R, Eberhardt W, Single C, Prins F, Wharam D and Kern D 2000 Appl. Phys. Lett. 76 2065
[15] Je M, Han S, Kim I and Shin H 2000 Solid-State Electron. 44 2207
[1] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[2] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[3] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[4] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[5] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[6] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[7] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[8] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[9] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[10] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[11] Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries
Zhizhou Yu(俞之舟), Fuming Xu(许富明). Chin. Phys. B, 2018, 27(12): 127203.
[12] Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices
Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印). Chin. Phys. B, 2017, 26(6): 067201.
[13] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[14] Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Hao Wang(王昊), Qi-feng Lyu(吕奇峰), Wang Zhang(张望), Xiang Yang(杨香), Fu-Hua Yang(杨富华). Chin. Phys. B, 2016, 25(6): 068103.
[15] Electron localization in ultrathin films of three-dimensional topological insulators
Jian Liao(廖剑), Gang Shi(史刚), Nan Liu(刘楠), Yongqing Li(李永庆). Chin. Phys. B, 2016, 25(11): 117201.
No Suggested Reading articles found!