Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 084201    DOI: 10.1088/1674-1056/23/8/084201
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

High refractive index sensitivity sensing in gold nanoslit arrays

Yuan Jun (袁浚)a, Kan Qiang (阚强)a, Geng Zhao-Xin (耿照新)a b, Xie Yi-Yang (解意洋)a, Wang Chun-Xia (王春霞)a, Chen Hong-Da (陈弘达)a
a State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b School of Information Engineering, Minzu University of China, Beijing 100081, China
Abstract  The extraordinary optical transmission (EOT) phenomenon of nano-periodic aperture array in metallic film has been widely investigated and used in biosensors. The surface plasmon resonance and cavity mode in some periodic nanostructures, such as nanohole and nanoslit, cause EOTs at certain wavelengths. This resonance wavelength is sensitive to the refractive index on the surface of periodic nanostructures. Therefore, the metallic nanostructures are expected to be good sensing elements. The sensing performances of gold nanoslit arrays are experimentally and theoretically investigated. Three-dimensional finite difference time domain (FDTD) simulations are utilized to explore their transmission spectra and steady-state field intensity distributions. The electron beam evaporation, electron beam lithography, and ion milling are applied to the gold nanoslit arrays with different widths and periods. The sensing performances of the gold nanoslit array are characterized via transmission spectra in four kinds of refractive index samples. The highest sensitivity reaches 726 nm/RIU when the width of the gold nanoslit array is 38.5 nm.
Keywords:  sensors      extraordinary optical transmission      nanoslit array      cavity mode  
Received:  04 September 2013      Revised:  16 December 2013      Accepted manuscript online: 
PACS:  42.81.Pa (Sensors, gyros)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  81.16.Rf (Micro- and nanoscale pattern formation)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Project supported by the National Key Basic Research Program of China (973 Program) (Grant Nos. 2011CB933102, 2010CB934104, and 2011CB933203), the National Natural Science Foundation of China (Grant Nos. 61036009 and 61378058), and the Science Innovation Foundation of the Cooperation Project between Jilin Province and Chinese Academy of Sciences (Grant No. 2012CJT0037).
Corresponding Authors:  Kan Qiang     E-mail:  kanqiang@semi.ac.cn

Cite this article: 

Yuan Jun (袁浚), Kan Qiang (阚强), Geng Zhao-Xin (耿照新), Xie Yi-Yang (解意洋), Wang Chun-Xia (王春霞), Chen Hong-Da (陈弘达) High refractive index sensitivity sensing in gold nanoslit arrays 2014 Chin. Phys. B 23 084201

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Ruan Z and Qiu M 2006 Phys. Rev. Lett. 96 233901
[3] Liu H T and Lalanne P 2008 Nature 425 728
[4] Pitarke J M, Silkin V M, Chulkov E V and Echenique P M 2007 Rep. Prog. Phys. 70 1
[5] Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W and L Kuipers 2010 Rev. Mod. Phys. 82 729
[6] Yanik A A, Cetin A E, Huang M, Artar A, Mousavi S H, Khanikaev A, Connor J H, Shvets G and Altug H 2011 Proc. Natl. Acad. Sci. 108 11784
[7] Li J H, Kan Q, Wang C X and Chen H D 2011 Chin. Opt. Lett. 9 090501
[8] Jose J, Jordan L R, Johnson T W, Lee S H, Wittenberg N J and Oh S H 2013 Adv. Funct. Mater. 23 2812
[9] Haes A J, Hall W P, Chang L, Klein W L and Van Duyne R P 2004 Nano Lett. 4 1029
[10] Gan Q Q and Bartoli F J 2009 Opt. Lett. 34 2180
[11] Zhao H J 2012 Chin. Phys. B 21 087104
[12] Jia P P, Jiang H, Sabarinathan J and Yang J 2013 Nanotechnology 24 195501
[13] Yoon J W, Jung M J, Song S H and Magnusson R 2012 IEEE J. Quantum Electron. 48 852
[14] Rahman A T M A, Majewski P and Vasilev 2012 Opt. Lett. 37 1742
[15] Pacifici D, Lezec H J, Atwater H A and Weiner J 2008 Phys. Rev. B 77 115411
[16] Lide D R 2004 CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press) ISBN 0-8493-0485-7
[17] Weiner J 2009 Rep. Prog. Phys. 72 064401
[18] Chang S H, Gray S K and Schatz G C 2005 Opt. Express 13 3150
[19] Tellez G A C, Hassan S, Tait R N, Berini P and Gordon R 2013 Lab on a Chip 13 2541
[20] Henzie J, Lee M H and Odom T W 2007 Nat. Nanotechnol. 2 549
[21] Sharpe J C, Mitchell J S, Lin L, Sedoglavich N and Balaikie R J 2008 Anal. Chem. 80 2244
[22] Zhang J Y, Wang X F, Wang X D, Fan Z C, Li Y, Ji A and Yang F H 2010 Nanotechnology 21 075303
[23] Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf T and Zhang S 2013 Light: Science & Applications 2 70
[24] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
[1] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[2] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[5] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[6] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[7] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[8] GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor
Bin Zhang(张彬), Tian-Ci Xie(谢天赐), Zhuang Qin(秦壮), Hao-Peng Li(李昊鹏), Song Li(李松), Wen-Hui Zhao(赵文辉), Zi-Yin Chen(陈子印), Jun Xu(徐军), Elfed Lewis, and Wei-Min Sun(孙伟民). Chin. Phys. B, 2021, 30(4): 048701.
[9] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
[10] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[11] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
[12] A target group tracking algorithm based on a hybrid sensor network
Chun Zhang(张淳). Chin. Phys. B, 2018, 27(8): 080101.
[13] Analysis of resonance asymmetry phenomenon in resonator integrated optic gyro
Yao Fei(费瑶), Yu-Ming He(何玉铭), Xiao-Dong Wang(王晓东), Fu-Hua Yang(杨富华), Zhao-Feng Li(李兆峰). Chin. Phys. B, 2018, 27(8): 084213.
[14] Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit
Hua Lu(陆华), Yi-Cun Fan(范奕村), Si-Qing Dai(戴思清), Dong Mao(毛东), Fa-Jun Xiao(肖发俊), Peng Li(李鹏), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117302.
[15] Cascaded tilted fiber Bragg grating for enhanced refractive index sensing
Biqiang Jiang(姜碧强), Zhixuan Bi(毕芷瑄), Shouheng Wang(王守恒), Teli Xi(席特立), Kaiming Zhou, Lin Zhang, Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114220.
No Suggested Reading articles found!