Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 078705    DOI: 10.1088/1674-1056/23/7/078705
Special Issue: TOPICAL REVIEW — Statistical Physics and Complex Systems
TOPICAL REVIEW—Statistical Physics and Complex Systems Prev   Next  

Proteins:From sequence to structure

Zheng Wei-Mou (郑伟谋)
Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Protein sequences as special heterogeneous sequences are rare in the amino acid sequence space. The specific sequential order of amino acids of a protein is essential to its 3D structure. On the whole, the correlation between sequence and structure of a protein is not so strong. How well would a protein sequence contain its structural information? How does a sequence determine its native structure? Keeping the globular proteins in mind, we discuss several problems from sequence to structure.
Keywords:  proteins      protein sequence      protein structures      protein folding  
Received:  02 March 2014      Revised:  13 June 2014      Accepted manuscript online: 
PACS:  87.14.E  
  87.15.B  
  87.15.Cc (Folding: thermodynamics, statistical mechanics, models, and pathways)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175224 and 11121403).
Corresponding Authors:  Zheng Wei-Mou     E-mail:  zheng@itp.ac.cn
About author:  87.14.E; 87.15.B; 87.15.Cc

Cite this article: 

Zheng Wei-Mou (郑伟谋) Proteins:From sequence to structure 2014 Chin. Phys. B 23 078705

[1] Branden C and Tooze J 1991 Introduction to Protein Structure (New York: Garland)
[2] Pauling L, Corey R B and Branson H R 1951 Proc. Natl. Acad. Sci. Wash. 37 205
[3] Pauling L and Corey R B 1951 Proc. Natl. Acad. Sci. Wash. 37 729
[4] Ramachandran G N, Ramakrishnan C and Sasisekharan V 1963 J. Mol. Biol. 7 95
[5] Zheng W Mand Liu X A 2005 Protein Structural Alphabet and Its Substitution Matrix CLESUM, in Lecture Notes in Bioinformatics 3680, edited by Priami C and Zelikovsky A (Berlin: Springer) pp. 59–67
[6] Berman H M and Westbrook J, Feng Z, Gilliland G, Bhat T N,Weissig H, Shindyalov I N and Bourne P E 2000 Nucl. Acids Res. 28 235
[7] Durbin R, Eddy S R, Krogh A and Mitchison G 1998 Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Cambridge: Cambridge University Press)
[8] Garnier J, Osguthorpe D J and Robson B 1978 J. Mol. Biol. 120 97
[9] Zheng W M 2004 J. Bioinfor. Comp. Biol. 2 333
[10] Buchan D W A, Minneci F, Nugent T C O, Bryson K and Jones D T 2013 Nucl. Acids Res. 41 W340
[11] McGuffin L J, Bryson K and Jones D T 2000 Bioinformatics 16 404
[12] Zheng W M 2005 Int. J. Bioinfor. Res. Appl. 1 420
[13] Finkelstein A V and Ptitsyn O 2002 Protein Physics: A Course of Lectures (Academic)
[14] Söding J 2005 Bioinformatics 21 951
[15] Söding J, Biegert A and Lupas A N 2005 Nucl. Acids Res. 33 W244
[16] Bowie J U, Luthy R and Eisenberg D 1991 Science 253 164
[17] Jones D T 2001 Proteins 45 127
[18] Das R and Baker D 2008 Ann. Rev. Biochem. 77 363
[19] Zhang Y, Arakaki A K and Skolnick J 2005 Proteins 61 91
[20] Hamelryck T, Kent J T and Krogh A 2006 PLoS Comput. Biol. 2 e131
[21] Li S C, Bu D, Xu J and Li M 2009 Protein Sci. 17 1925
[22] Dyson H J, Cross K J, Houghten R A, Wilson I A Wright P E and Lerner R A 1985 Nature 318 480
[23] Dyson H J, Rance M, Houghten R A, Wright P E and Lerner R A 1988 J. Mol. Biol. 201 201
[24] Karplus M and Weaver D L 1979 Biopolymers 18 1421
[25] Chan H S and Dill K A 1990 Proc. Natl. Acad. Sci. USA 87 6388
[26] Dyson H J, Merutka G, Waltho J P, Lerner R A and Wright P E 1992 J. Mol. Biol. 226 795
[27] Dyson H J, Merutka G, Waltho J P, Lerner R A and Wright P E 1992 J. Mol. Biol. 226 819
[28] Rotondi K S and Gierasch L M 2003 Biochemistry 42 7976
[29] Avbelj F and Moult J 1995 Proteins 23 129
[30] Bosco K H and Ken A Dill 2006 PLoS Comput. Biol. 2 e27
[31] Bystroff C and Baker D 1998 J. Mol. Biol. 281 565
[32] Bystroff C and Garde S 2003 Proteins 50 552
[33] Bateman A, Coin L, Durbin R, Finn R D, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer E L L, Studholme D J, Yeats C and Eddy S R 2004 Nucl. Acids Res. 32 D138
[34] Finn R D, Tate J, Mistry J, Coggill P C, Sammut S J, Hotz H, Ceric G, Forslund K, Eddy S R, Sonnhammer E L L and Bateman A 2008 Nucl. Acids Res. 36 D281
[35] Morcos F, Pagnanib A, Lunta B, Bertolinoc A, Marksd D S, Sandere C, Zecchinab R, Onuchica J N, Hwaa T and Weigtb M 2011 Proc. Natl. Acad. Sci. USA 108 E1293
[36] Jones D T, Buchan D W A, Cozzetto D and Pontil M 2012 Bioinformatics 28 184
[37] de Juan D, Pazos F and Valencia A 2013 Nat. Rev. Genet. 14 249
[1] Biased random walk with restart for essential proteins prediction
Pengli Lu(卢鹏丽), Yuntian Chen(陈云天), Teng Zhang(张腾), and Yonggang Liao(廖永刚). Chin. Phys. B, 2022, 31(11): 118901.
[2] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
[3] Modeling hydrogen exchange of proteins by a multiscale method
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜). Chin. Phys. B, 2021, 30(7): 078701.
[4] Folding nucleus and unfolding dynamics of protein 2GB1
Xuefeng Wei(韦学锋) and Yanting Wang(王延颋). Chin. Phys. B, 2021, 30(2): 028703.
[5] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[6] Application of topological soliton in modeling protein folding: Recent progress and perspective
Xu-Biao Peng(彭绪彪)†, Jiao-Jiao Liu(刘娇娇), Jin Dai(戴劲), Antti J Niemi‡, and Jian-Feng He(何建锋)§. Chin. Phys. B, 2020, 29(10): 108705.
[7] Quantum intelligence on protein folding pathways
Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉). Chin. Phys. B, 2020, 29(1): 018702.
[8] Smoothing potential energy surface of proteins by hybrid coarse grained approach
Yukun Lu(卢禹锟), Xin Zhou(周昕), ZhongCan OuYang(欧阳钟灿). Chin. Phys. B, 2017, 26(5): 050202.
[9] Knowledge-based potentials in bioinformatics: From a physicist's viewpoint
Zheng Wei-Mou (郑伟谋). Chin. Phys. B, 2015, 24(12): 128701.
[10] Predicting the subcellular location of apoptosis proteins based on recurrence quantification analysis and the Hilbert–Huang transform
Han Guo-Sheng(韩国胜), Yu Zu-Guo(喻祖国), and Anh Vo . Chin. Phys. B, 2011, 20(10): 100504.
[11] Combining SAD/SIR iteration and MR iteration in partial-model extension of proteins
Zhang Tao(张涛), Wu Li-Jie(武丽杰), Gu Yuan-Xin(古元新), Zheng Chao-De(郑朝德), and Fan Hai-Fu(范海福). Chin. Phys. B, 2010, 19(9): 096101.
[12] New expression of bimodal phase distributions in direct-method phasing of protein single-wavelength anomalous diffraction data
Zhang Tao (张涛), Gu Yuan-Xin (古元新), Zheng Chao-De (郑朝德), Fan Hai-Fu (范海福). Chin. Phys. B, 2010, 19(8): 086102.
[13] OASIS4.0—a new version of the program OASIS for phasing protein diffraction data
Zhang Tao(张涛), Gu Yuan-Xin(古元新), Zheng Chao-De(郑朝德), and Fan Hai-Fu(范海福). Chin. Phys. B, 2010, 19(8): 086103.
[14] Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures
Yu Zu-Guo(喻祖国), Xiao Qian-Jun(肖前军), Shi Long(石龙), Yu Jun-Wu(余君武), and Vo Anh. Chin. Phys. B, 2010, 19(6): 068701.
[15] Structure optimization by heuristic algorithm in a coarse-grained off-lattice model
Liu Jing-Fa(刘景发). Chin. Phys. B, 2009, 18(6): 2615-2621.
No Suggested Reading articles found!