Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 075206    DOI: 10.1088/1674-1056/23/7/075206
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Toroidicity and shape dependence of peeling mode growth rates in axisymmetric toroidal plasmas

Shi Bing-Ren (石秉仁)
Southwestern Institute of Physics, Chengdu 610041, China
Abstract  The growth rate of the peeling mode instability with large toroidal mode number is calculated for general axisymmetric toroidal plasmas, including tokamaks and the spherical torus (ST) equilibia by using formalism presented by Connor et al. Analytic equilibia with non-zero edge current density and quasi-uniform current profiles are assumed. It is found that in sharp D-shape tokamak plasma, the derivative of the safety factor with respect to the poloidal flux becomes very large, making the perturbed poloidal motion very large, in turn making a significant reduction of the growth rate of the peeling mode, similar to the X-point effect in diverted plasma. The large aspect ratio effect is also studied, which reduces the growth rate further.
Keywords:  peeling instability      D-shape and inverse D-shape configurations      todoidicity dependence  
Received:  25 November 2013      Revised:  07 January 2014      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.Rk (Power exhaust; divertors)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2009GB101002).
Corresponding Authors:  Shi Bing-Ren     E-mail:  shibr@swip.ac.cn
About author:  52.55.Fa; 52.55.Rk

Cite this article: 

Shi Bing-Ren (石秉仁) Toroidicity and shape dependence of peeling mode growth rates in axisymmetric toroidal plasmas 2014 Chin. Phys. B 23 075206

[1] Webster A J 2012 Nucl. Fusion 52 114023
[2] Laval G, Pellat R and Soule J S 1974 Phys. Fluids 17 835
[3] Lortz D 1975 Nucl. Fusion 15 49
[4] Connor J W, Hastie R J, Wilson H R and Miller R L 1998 Phys. Plasmas 5 2687
[5] Medevedev S Y, Martynov A A, Matin Y R, Sauter O and Villard L 2006 Plasma Phys. Contr. Fusion 48 927
[6] Huysmans G T A 2005 Plasma Phys. Contr. Fusion 47 2107
[7] Huysmans G T A and Czarny O 2007 Nucl. Fusion 47 659
[8] Saarelma S, Alfier A, Beuskans M N A, Coelho R, Koslowski H R, Liang Y, Nunes I and JET EFDA Contributors 2009 Plasma Phys. Contr. Fusion 51 035001
[9] Wilson H R, Snyder P B, Husmans G T A and Miller R L 2002 Phys. Plasmas 9 1277
[10] Ferraro N M, Jardin S C and Snyder P B 2010 Phys. Plasmas 17 102508
[11] Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M and Xu X Q 2002 Phys. Plasmas 9 2037
[12] Huysmans G T A 2005 Plasma Phys. Contr. Fusion 47 B165
[13] Wilson H R, Cowley S C, Kirk A and Snyder P B 2006 Plasma Phys. Contr. Fusion 48 A71
[14] Webster A J 2009 Phys. Plasmas 16 012501
[15] Webster A J and Gimblett C G 2009 Phys. Rev. Lett. 102 035003
[16] Webster A J and Gimblett C G 2009 Phys. Plasmas 16 082502
[17] Webster A J 2009 Phys. Plasmas 16 082503
[18] Burke B J, Kruger S E, Hegna C C, Zhu P, Snyder P B, Sovinec C R and Howell E C 2010 Phys. Plasmas 17 032103
[19] Xu X Q, Cohen R H, Nevins W M, Porter G D, Rensink M E, Rognlien T D, Myra J R, Dlppolito D A, Moyer R A, Snyder P B and Cartstrom T N 2002 Nucl. Fusion 42 21
[20] Snyder P B, Wilson H R and Xu X Q 2005 Phys. Plasmas 12 056115
[21] Dudson B D, Umanski M V, Xu X Q, Snyder P B and Wilson H R 2009 Comput. Phys. Commun. 180 1467
[22] Federici G, Loarte A and Strohmayer G 2003 Plasma Phys. Contr. Fusion 45 1523
[23] Shi B R 2014 Chin. Phys. B 23 015202
[24] Shi B R 2004 Plasma Phys. Contr. Fusion 46 1105
[25] Mercier C 1960 Nucl. Fusion 1 47
[26] Wening R H 1997 Phys. Plasmas 4 3254
[27] Wening R H 2000 Phys. Plasmas 7 3654
[1] Upgrade of the magnetic diagnostic system for restart of HT-6M operation
Li-Xing Chen(陈力行), Biao Shen(沈飊), Da-Long Chen(陈大龙), Zheng-Ping Luo(罗正平),Zu-Chao Zhang(张祖超), Ying Chen(陈颖), Yong Wang(王勇), and Jin-Ping Qian(钱金平). Chin. Phys. B, 2022, 31(12): 125203.
[2] Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak
Ji-Chan Xu(许吉禅), Liang Wang(王亮), Guo-Sheng Xu(徐国盛), Yan-Min Duan(段艳敏), Ling-Yi Meng(孟令义), Ke-Dong Li(李克栋), Fang Ding(丁芳), Rui-Rong Liang(梁瑞荣), Jian-Bin Liu(刘建斌), and EAST Team. Chin. Phys. B, 2022, 31(10): 105203.
[3] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[4] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[5] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[6] The intermittent excitation of geodesic acoustic mode by resonant Instanton of electron drift wave envelope in L-mode discharge near tokamak edge
Zhao-Yang Liu(刘朝阳), Yang-Zhong Zhang(章扬忠), Swadesh Mitter Mahajan, A-Di Liu(刘阿娣), Chu Zhou(周楚), and Tao Xie(谢涛). Chin. Phys. B, 2022, 31(4): 045202.
[7] Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak
Jing-Chun Li(李景春), Jia-Qi Dong(董家齐), Xiao-Quan Ji(季小全), and You-Jun Hu(胡友俊). Chin. Phys. B, 2021, 30(7): 075203.
[8] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[9] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[10] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[11] Estimation of plasma equilibrium parameters via a neural network approach
Zi-Jian Zhu(朱子健), Yong Guo(郭勇), Fei Yang(杨飞), Bing-Jia Xiao(肖炳甲), Jian-Gang Li(李建刚). Chin. Phys. B, 2019, 28(12): 125204.
[12] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[13] Numerical study of influence of J×B force on melt layer under conditions relevant to ITER ELMs
Yan Huang(黄艳), Ji-Zhong Sun(孙继忠), Juan Cai(蔡娟), Zhen-Yue Sun(孙振月), Chao-Feng Sang(桑超峰), De-Zhen Wang(王德真). Chin. Phys. B, 2019, 28(4): 045201.
[14] Investigation on the drives of the poloidal flow in the ohmic and biased electrode experiments
Yi Yu(余羿), Tao Lan(兰涛), Min Xu(许敏), Yizhi Wen(闻一之). Chin. Phys. B, 2019, 28(3): 035202.
[15] Radiative divertor behavior and physics in Ar seeded plasma on EAST
Jingbo Chen(陈竞博), Yanmin Duan(段艳敏), Zhongshi Yang(杨钟时), Liang Wang(王亮), Kai Wu(吴凯), Kedong Li(李克栋), Fang Ding(丁芳), Hongmin Mao(毛红敏), Jichan Xu(许吉禅), Wei Gao(高伟), Ling Zhang(张凌), Jinhua Wu(吴金华), Guang-Nan Luo(罗广南), EAST Team. Chin. Phys. B, 2017, 26(9): 095205.
No Suggested Reading articles found!