PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Investigation on the drives of the poloidal flow in the ohmic and biased electrode experiments |
Yi Yu(余羿)1,2, Tao Lan(兰涛)1, Min Xu(许敏)3, Yizhi Wen(闻一之)1 |
1 University of Science and Technology of China, Hefei 230026, China;
2 School of Science, Xihua University, Chengdu 610041, China;
3 Southwestern Institute of Physics, Chengdu 610041, China |
|
|
Abstract The experimental investigation on the drives of the poloidal flow in KT-5D tokamak are presented. It is found that the poloidal flow is the main contributor to the radial electric field, and the Reynolds stress can drive significant poloidal flows in ohmic discharges. The investigation on the relationship between the radial gradient of Reynolds stress and the poloidal flow in biasing discharges indicates that not only Reynolds stress but also the Lorentz's force can drive the poloidal flow.
|
Received: 31 October 2018
Revised: 14 December 2018
Accepted manuscript online:
|
PACS:
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
52.25.Gj
|
(Fluctuation and chaos phenomena)
|
|
52.35.Ra
|
(Plasma turbulence)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875124), the National Magnetic Confinement Fusion Energy Research Project, China (Grant No. 2015GB120002), and the National Key Research and Development Program of China (Grant No. 2017YFE0300405). |
Corresponding Authors:
Yi Yu
E-mail: yuyi@ustc.edu.cn
|
Cite this article:
Yi Yu(余羿), Tao Lan(兰涛), Min Xu(许敏), Yizhi Wen(闻一之) Investigation on the drives of the poloidal flow in the ohmic and biased electrode experiments 2019 Chin. Phys. B 28 035202
|
[1] |
Ritz C P, Lin H, Rhodes T L and Wootton A J 1990 Phys. Rev. Lett. 65 2543
|
[2] |
Rempel T P, Spragins C W, Prager S C, Assadi S, Hartog Den D J and Hokin S 1991 Phys. Rev. Lett. 67 1438
|
[3] |
Endler M, Niedermeyer H, Giannone L, Holzhauer E, Rudyj A, Theimer G and Tsois N 1995 Nucl. Fusion 35 1307
|
[4] |
Chapman B E, Chiang C S, Prager S C, Sarff J S and Stoneking M R 1998 Phys. Rev. Lett. 80 2137
|
[5] |
Shaing K C and Grume E C 1989 Phys. Rev. Lett. 63 2369
|
[6] |
Itoh K and Itoh S 1996 Plasma Phys. Control. Fusion 38 1
|
[7] |
Kobayashi T, Itoh K, Ido T, Kamiya K, Itoh S I, Miura Y, Nagashima Y, Fujisawa A, Inagaki S, Ida K and Hoshino K 2016 Plasmas. Sci. Rep. 6 30720
|
[8] |
Diamond P H and Kim Y B 1991 Phys. Fluids B 3 1626
|
[9] |
Carreras B A, Lynch V E and Garcia L 1991 Phys. Fluids B 3 1438
|
[10] |
Garcia L, Carreras B A, Lynch V E and Diamond P H 1992 Proceedings of the 14th Conference on Plasma Physics and Controlled Nuclear Fusion Research, September 30-October 7, 1992 Würzburg, Germany, vol. 2, p. 225
|
[11] |
Burrel K H 1994 Plasma Phys. Control. Fusion 36 A291
|
[12] |
Moyer R A, Burrell K H, Carlstrom T N, Coda S, Conn R W, Doyle E J, Gohil P, Groebner R J, Kim J, Lehmer R, Peebles W A, Porkolab M, Rettig C L, Rhodes T L, Seraydarian T P, Stockdale T, Thomas D M, Tynan G R and Watkins J G 1995 Phys. Plasmas 2 2397
|
[13] |
LeBlanc B, Batha S, Bell R, et al. 1995 Phys. Plasmas 2 741
|
[14] |
Gohil P, McKee G R, Schlossberg D, Schmitz L and Wang G 2008 J. Phys.: Conf. Ser. 123 012017
|
[15] |
Weynants R R and Taylor R J 1990 Nucl. Fusion 30 945
|
[16] |
Shesterikov I, Xu Y, Tynan G R, Diamond P H, Jachmich S, Dumortier P, Vergote M, Van Schoor M, Van Oost G and TEXTOR Team 2013 Phys. Rev. Lett. 111 055006
|
[17] |
Cornelis J, Sporken R, Van Oost G and Weynants R R 1994 Nucl. Fusion 34 171
|
[18] |
Nascimento I C, Kuznetsov Y K, Severo J H F, Fonseca A M M, Elfimov A, Bellintani V, Machida M, Heller M V A P, Galvao R M O, Sanada E K and Elizondo J I 2005 Nucl. Fusion 45 796
|
[19] |
Craig D, Almagri A F, Anderson J K, Chapman J T, Chiang C S, Crocker N A, Hartog Den D J, Fiksel G, Prager S C, Sarff J S and Stoneking M R 1997 Phys. Rev. Lett. 79 1865
|
[20] |
Shinohara S, Matsuoka N and Yoshinaka T 1999 Jpn. J. Appl. Phys. 38 4321
|
[21] |
Hidalgo C, Silva C, Pedrosa M A, Sanchez E, Fernandes H and Varandas C A F 1999 Phys. Rev. Lett. 83 2203
|
[22] |
Oost Van G, Adamek J, Antoni V, et al. 2003 Plasma Phys. Control. Fusion 45 621
|
[23] |
Yu Y, Wang Z, Xu M, Zhu Z, Lu R, Wen Y, Yu C, Wan S, Liu W, Wang J, Xu X and Hu L 2006 Rev. Sci. Instr. 77 123502
|
[24] |
Yu Y, Wen Y, Yu C, Wan S and Liu W 2008 Rev. Sci. Instr. 79 083507
|
[25] |
Chen S L and Sekiguchi T 1965 J. Appl. Phys. 36 2363
|
[26] |
Hutchinson I H 2014 Principles of Plasma Diagnostics (2nd edn.) (Cambridge: Cambridge University Press) p. 60
|
[27] |
Groebner R J, Burrell K H and Seraydarian R P 1990 Phys. Rev. Lett. 64 3015
|
[28] |
Wang C, Pan G, Yu C, Wen Y, Wan S, Wang Z, Liu W, Sun X, Wang J and Gao H 2002 IEEE Trans. Plasma Sci. 30 625
|
[29] |
Yu Y, Lu R, Wang C, Pan G, Wen Y, Yu C, Ma J, Wan S and Liu W 2006 Plasma Sci. Tech. 8 91
|
[30] |
Tala T, Andrew Y, Crombe K, et al. 2007 Nucl. Fusion 47 1012
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|