CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ferromagnetic-insulators-modulated transport properties on the surface of a topological insulator |
Guo Jun-Ji (郭俊吉), Liao Wen-Hu (廖文虎) |
College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China |
|
|
Abstract Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n-n junction and n-p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0≤θ<π/2 and π/2<θ≤π, the transmission probability of the n-n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n-p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs.
|
Received: 11 September 2013
Revised: 24 January 2014
Accepted manuscript online:
|
PACS:
|
71.10.Pm
|
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264013 and 11147021), the Hunan Provincial Natural Science Foundation of China (Grant No. 12JJ4003), and the Research Program for Employee of Jishou University, China (Grant No. jsdxkyzz201005). |
Corresponding Authors:
Liao Wen-Hu
E-mail: whliao2007@aliyun.com
|
Cite this article:
Guo Jun-Ji (郭俊吉), Liao Wen-Hu (廖文虎) Ferromagnetic-insulators-modulated transport properties on the surface of a topological insulator 2014 Chin. Phys. B 23 067104
|
[1] |
Qi X L and Zhang S C 2007 Rev. Mod. Phys. 83 1057
|
[2] |
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[3] |
Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
|
[4] |
Yu R, Fang Z and Dai X 2011 Physics 40 462 (in Chinese)
|
[5] |
Jiang H, Chen S G, Sun Q F and Xie X C 2011 Physics 40 454 (in Chinese)
|
[6] |
Cheng P, Zhang T, He K, Chen X, Ma X C and Xue Q K 2011 Physics 40 449 (in Chinese)
|
[7] |
Ye F and Su G 2010 Physics 39 564 (in Chinese)
|
[8] |
Wang H C and Wang J 2012 Physics 41 705 (in Chinese)
|
[9] |
Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
|
[10] |
Yuan J H, Cheng Z, Zhang J J, Zeng Q J and Zhang J P 2012 Chin. Phys. B 21 047203
|
[11] |
Wu K H and Li Y Q 2011 Physics 40 440 (in Chinese)
|
[12] |
Chang K 2011 Physics 40 458 (in Chinese)
|
[13] |
Noh H J, Koh H, Oh S J, Park J H, Kim H D, Rameau J D, Valla T, Kidd T E, Johnson P D, Hu Y and Li Q 2008 Europhys. Lett. 81 57006
|
[14] |
Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J H, Osterwalder J, Patthey L, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Phys. Rev. Lett. 103 146401
|
[15] |
Li H C, Sheng L, Sheng D N and Xing D Y 2010 Phys. Rev. B 82 165104
|
[16] |
Zhang T, Cheng P, Chen X, Jia J F, Ma X C, He K, Wang L L, Zhang H J, Dai X, Fang Z, Xie X C and Xue Q K 2009 Phys. Rev. Lett. 103 266803
|
[17] |
Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science 323 919
|
[18] |
Roth A, Brüne C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L and Zhang S C 2009 Science 325 294
|
[19] |
San J P, Prada E, McCann E and Schomerus H 2009 Phys. Rev. Lett. 102 247204
|
[20] |
Burkov A A and Hawthorn D G 2010 Phys. Rev. Lett. 105 066802
|
[21] |
Soodchomshom B 2010 Phys. Lett. A 374 2894
|
[22] |
Kong B D, Semenov Y G, Krowne C M and Kim K W 2011 Appl. Phys. Lett. 98 243112
|
[23] |
Gao J H, Yuan J, Chen W Q, Zhou Y and Zhang F C 2011 Phys. Rev. Lett. 106 057205
|
[24] |
Mahfouzi F, Nikolić B K, Chen S H and Chang C R 2010 Phys. Rev. B 82 195440
|
[25] |
Semenov Y G, Duan X P and Kim K W 2012 Phys. Rev. B 86 161406
|
[26] |
Yokoyama T, Tanaka Y and Nagaosa N 2010 Phys. Rev. B 81 121401
|
[27] |
Zhang K H, Wang Z C, Zheng Q R and Su G 2012 Phys. Rev. B 86 174416
|
[28] |
Gao J H, Chen W Q, Feng X Y, Xie X C and Zhang F C 2009 arXiv: 0909. 0378v1
|
[29] |
Ma X H, Ma P, Jiao Y, Yang L Y, Ma J G, He Q, Jiao S S, Zhang J C and Hao Y 2011 Chin. Phys. B 20 097302
|
[30] |
Huang W, Wang Z L and Yan M L 2010 Chin. Phys. Lett. 27 067304
|
[31] |
Cao J X, Yan X H, Xiao Y and Ding J W 2003 Chin. Phys. 12 1440
|
[32] |
Chen Q, Li T C, Shi Q W and Wang X P 2005 Acta Phys. Sin. 54 3962 (in Chinese)
|
[33] |
Zeng H, Hu H F, Wei J W, Xie F and Peng P 2006 Acta Phys. Sin. 55 4822 (in Chinese)
|
[34] |
Chen J W and Yang L F 2005 Acta Phys. Sin. 54 2183 (in Chinese)
|
[35] |
Guo W, Hu Y B, Zhang Y Y, Du S X and Gao H J 2009 Chin. Phys. B 18 2502
|
[36] |
Chen F, Chen Y P, Zhang M and Zhong J X 2010 Chin. Phys. B 19 086105
|
[37] |
Chen L N, Ma S S, Ouyang F P, Wu X Z, Xiao J and Xu H 2010 Chin. Phys. B 19 097301
|
[38] |
Mondal S, Sen D, Sengupta K and Shankar R 2010 Phys. Rev. Lett. 104 046403
|
[39] |
Ueda H T, Takeuchi A, Tatara G and Yokoyama T 2012 Phys. Rev. B 85 115110
|
[40] |
Linder J, Tanaka Y, Yokoyama T, Sudb A and Nagaosa N 2010 Phys. Rev. B 81 184525
|
[41] |
Zhai F and Mu P Y 2011 Appl. Phys. Lett. 98 022107
|
[42] |
Wang H Y, Chen X W, Zhou X Y, Zhang L B and Zhou G H 2012 Physica B 407 3364
|
[43] |
Zhang Y and Zhai F 2010 Appl. Phys. Lett. 96 172109
|
[44] |
Alos P M, Tiwari R P and Blaauboer M 2012 New. J. Phys. 14 113003
|
[45] |
Zhang J P and Yuan J H 2012 Eur. Phys. J. B 85 100
|
[46] |
Yuan J H, Zhang Y, Zhang J J and Cheng Z 2013 Eur. Phys. J. B 86 36
|
[47] |
Wu Z H, Peeters F M and Chang K 2010 Phys. Rev. B 82 115211
|
[48] |
Wu Z H, Peeters F M and Chang K 2011 Appl. Phys. Lett. 98 162101
|
[49] |
Wickles C and Belzig W 2012 Phys. Rev. B 86 035151
|
[50] |
Shao H H, Zhou X Y, Li Y, Liu G H and Zhou G H 2011 Appl. Phys. Lett. 99 153104
|
[51] |
Zhou X Y, Shao H H, Liu Y M, Tang D S and Zhou G H 2012 J. Phys.: Condens. Matter 24 185301
|
[52] |
Zhao L, Liu J W, Tang P Z and Duan W H 2012 Appl. Phys. Lett. 100 131602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|