Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050201    DOI: 10.1088/1674-1056/23/5/050201
GENERAL   Next  

Collective surrounding control in multi-agent networks

Wei Ting-Ting (魏婷婷)a b, Chen Xiao-Ping (陈小平)b
a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  We study the collective encirclement control problem of a multi-agent system in this paper, where the agents move collectively to encircle the multiple targets. An algorithm is proposed and a sufficient condition is derived to realize the collective encirclement motion. Some simulation results are provided to show the effectiveness of the obtained theoretical results.
Keywords:  surrounding motion      networks      multiple targets  
Received:  09 June 2013      Revised:  21 October 2013      Accepted manuscript online: 
PACS:  02.10.Yn (Matrix theory)  
  05.65.+b (Self-organized systems)  
  87.10.-e (General theory and mathematical aspects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61203080), the Foundation of State Key Laboratory of Networking and Switching Technology Foundation, China (Grant No. SKLNST2011105), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2010J113 and ZYGX2010J114).
Corresponding Authors:  Wei Ting-Ting     E-mail:  weiwtt@163.com
About author:  02.10.Yn; 05.65.+b; 87.10.-e

Cite this article: 

Wei Ting-Ting (魏婷婷), Chen Xiao-Ping (陈小平) Collective surrounding control in multi-agent networks 2014 Chin. Phys. B 23 050201

[1] Lin P, Jia Y and Li L 2008 Systems and Control Letters 643 653
[2] Lin P and Jia Y 2008 Physica A 387 303
[3] Choi J, Oh S and Horowitz R 2009 Automatica 2802 2814
[4] Hong Y, Gao L, Cheng D and Hu J 2007 IEEE Trans. on Automatic Control 943 948
[5] Hong Y, Chen G and Bushnell L 2008 Automatica 846 850
[6] Guan Z, Wu Y and Feng G 2012 IEEE Trans. on Circuits and Systems 170 178
[7] Liu Z, Guan Z and Shen X 2012 IEEE Trans. on Automatica Control 2639 2643
[8] Guan Z, Liu Z and Feng G 2012 Automatica 1397 1404
[9] Lin P and Jia Y 2009 Automatica 45 2154
[10] Lin P and Jia Y 2010 IEEE Trans. Automatic Control 55 778
[11] Lin P and Jia Y 2011 Automatica 47 848
[12] Zhang W, Liu J, Zeng D and Hu Y 2013 Chin. Phys. B 22 050511
[13] Marasco A J, Givigi S N and Rabbath C A 2012 American Control Conference 2004 2009
[14] Chen F, Ren W and Cao Y 2010 Systems and Control Letters 704 712
[15] Hu J and Yuan H 2009 Chin. Phys. B 18 3777
[16] Guan X and Li Y 2009 Chin. Phys. B 18 3355
[17] Pei W, Chen Z and Yuan Z 2008 Chin. Phys. B 17 337
[18] Lin P and Jia Y 2008 Physica A 387 303
[19] Godsil C and Royle G 2001 Algebraic Graph Theory (New York: Springer-Verlag)
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[5] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] Influence fast or later: Two types of influencers in social networks
Fang Zhou(周方), Chang Su(苏畅), Shuqi Xu(徐舒琪), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2022, 31(6): 068901.
[8] A novel similarity measure for mining missing links in long-path networks
Yijun Ran(冉义军), Tianyu Liu(刘天宇), Tao Jia(贾韬), and Xiao-Ke Xu(许小可). Chin. Phys. B, 2022, 31(6): 068902.
[9] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[10] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[11] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[12] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[13] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[14] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[15] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
No Suggested Reading articles found!